DCA Moraes , PC Gauger , OH Osemeke , IF Machado , G Cezar , RC Paiva , MP Mil-Homens , MN Almeida , A Ramirez , GS Silva , DCL Linhares
{"title":"Assessment of individual and population-based sampling for detection of influenza A virus RNA in breeding swine herds","authors":"DCA Moraes , PC Gauger , OH Osemeke , IF Machado , G Cezar , RC Paiva , MP Mil-Homens , MN Almeida , A Ramirez , GS Silva , DCL Linhares","doi":"10.1016/j.vetmic.2025.110423","DOIUrl":null,"url":null,"abstract":"<div><div>Sample types currently used for Influenza A virus (IAV) surveillance in swine farms vary in sensitivity, convenience of collection, and herd representativeness. Family oral fluids are an effective population-based sample type for detecting porcine reproductive and respiratory syndrome virus (PRRSV) (ribonucleic acid) RNA by real-time reverse transcription–polymerase chain reaction (RT-rtPCR) in breeding herds. However, little is known about the efficacy of family oral fluids samples for detecting IAV RNA in these herds. This study compared the probability of IAV RNA detection among individual and population-based samples. A 3,500-sow breeding herd was sampled for matched sets (n = 57) of family oral fluids, udder wipes, sow nasal wipes, individual piglet nasal wipes, and drinker wipes, tested by RT-rtPCR for IAV RNA. Overall, 57.9 % (33/57) of family oral fluids, 49.1 % (28/57) of udder wipes, 28.1 % (16/57) of sow nasal wipes, 15.8 % (9/57) of drinker wipes, and 66.6 % (38/57) of individual piglet nasal wipes were positive. Family oral fluids showed a Kappa value of 0.81, indicating near-perfect agreement with individual piglet nasal wipes, while udder wipes had a substantial agreement (Kappa = 0.65). Other sample types showed fair agreement (Kappa < 0.28). These results validate family oral fluids as an efficient alternative population-based sample for IAV surveillance in breeding herds. The proportion of positive piglets within litters by room was 91 % in room A (20/22), 70 % in room B (17/24), and 9 % in room C (1/11). This study also highlights the importance of sampling different farrowing rooms within the same breeding herd to enhance IAV surveillance.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"302 ","pages":"Article 110423"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000586","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sample types currently used for Influenza A virus (IAV) surveillance in swine farms vary in sensitivity, convenience of collection, and herd representativeness. Family oral fluids are an effective population-based sample type for detecting porcine reproductive and respiratory syndrome virus (PRRSV) (ribonucleic acid) RNA by real-time reverse transcription–polymerase chain reaction (RT-rtPCR) in breeding herds. However, little is known about the efficacy of family oral fluids samples for detecting IAV RNA in these herds. This study compared the probability of IAV RNA detection among individual and population-based samples. A 3,500-sow breeding herd was sampled for matched sets (n = 57) of family oral fluids, udder wipes, sow nasal wipes, individual piglet nasal wipes, and drinker wipes, tested by RT-rtPCR for IAV RNA. Overall, 57.9 % (33/57) of family oral fluids, 49.1 % (28/57) of udder wipes, 28.1 % (16/57) of sow nasal wipes, 15.8 % (9/57) of drinker wipes, and 66.6 % (38/57) of individual piglet nasal wipes were positive. Family oral fluids showed a Kappa value of 0.81, indicating near-perfect agreement with individual piglet nasal wipes, while udder wipes had a substantial agreement (Kappa = 0.65). Other sample types showed fair agreement (Kappa < 0.28). These results validate family oral fluids as an efficient alternative population-based sample for IAV surveillance in breeding herds. The proportion of positive piglets within litters by room was 91 % in room A (20/22), 70 % in room B (17/24), and 9 % in room C (1/11). This study also highlights the importance of sampling different farrowing rooms within the same breeding herd to enhance IAV surveillance.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.