Ginkgo leaf nanoarchitectonics-derived carbon materials containing ultrathin carbon nanosheets for high-performance symmetric supercapacitors

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2025-02-08 DOI:10.1016/j.jpcs.2025.112624
Lihua Zhang , Xiaoyang Cheng , Lingyan Li , Hao Wu , Jinfeng Zheng , Jingwei Li , Ting Yi
{"title":"Ginkgo leaf nanoarchitectonics-derived carbon materials containing ultrathin carbon nanosheets for high-performance symmetric supercapacitors","authors":"Lihua Zhang ,&nbsp;Xiaoyang Cheng ,&nbsp;Lingyan Li ,&nbsp;Hao Wu ,&nbsp;Jinfeng Zheng ,&nbsp;Jingwei Li ,&nbsp;Ting Yi","doi":"10.1016/j.jpcs.2025.112624","DOIUrl":null,"url":null,"abstract":"<div><div>The carbon material derived from ginkgo leaves is composed of stacked ultra-thin carbon nanosheets. To this end, carbon materials containing ultra-thin carbon nanosheets were prepared by using ginkgo leaf as a carbon source and KCl as a stripping agent. The study found that the formation of ultra-thin carbon nanosheets depends on the structure of the biomass, and only Cl<sup>−</sup> in KCl produces a stripping effect, independent of K<sup>+</sup>. The composition and structure of carbon materials are closely related to the mass of KCl, and different KCl mass can make carbon materials have different specific surface area and heteroatom content. When 12 g KCl was added, the prepared GCK-12 had the highest heteroatom content and medium specific surface area. Electrochemical test results show that the electrochemical performance of KCl-modified carbon materials is higher than that of unmodified carbon materials, indicating that ultra-thin carbon nanosheets provide more active sites for electrodes. Among them, GCK-12 has the best electrochemical performance, and the specific capacitance is 240 F g<sup>−1</sup> when the current density is 1 A g<sup>−1</sup>. Above or below 12 g, the specific capacitance will be reduced. The symmetric supercapacitors assembled with GCK-12 have an energy density of up to 15 Wh kg<sup>−1</sup>, which is superior to previously reported biomass carbon materials. By analyzing the relationship between the structure and electrochemical performance of GCK-12, it can be seen that increasing the heteroatom content is more beneficial to improve the electrochemical performance than increasing the specific surface area. This work not only provides a new method for the preparation of ultra-thin carbon nanosheets, but also provides a new idea for the design and synthesis of high-performance carbon materials.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"200 ","pages":"Article 112624"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725000757","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon material derived from ginkgo leaves is composed of stacked ultra-thin carbon nanosheets. To this end, carbon materials containing ultra-thin carbon nanosheets were prepared by using ginkgo leaf as a carbon source and KCl as a stripping agent. The study found that the formation of ultra-thin carbon nanosheets depends on the structure of the biomass, and only Cl in KCl produces a stripping effect, independent of K+. The composition and structure of carbon materials are closely related to the mass of KCl, and different KCl mass can make carbon materials have different specific surface area and heteroatom content. When 12 g KCl was added, the prepared GCK-12 had the highest heteroatom content and medium specific surface area. Electrochemical test results show that the electrochemical performance of KCl-modified carbon materials is higher than that of unmodified carbon materials, indicating that ultra-thin carbon nanosheets provide more active sites for electrodes. Among them, GCK-12 has the best electrochemical performance, and the specific capacitance is 240 F g−1 when the current density is 1 A g−1. Above or below 12 g, the specific capacitance will be reduced. The symmetric supercapacitors assembled with GCK-12 have an energy density of up to 15 Wh kg−1, which is superior to previously reported biomass carbon materials. By analyzing the relationship between the structure and electrochemical performance of GCK-12, it can be seen that increasing the heteroatom content is more beneficial to improve the electrochemical performance than increasing the specific surface area. This work not only provides a new method for the preparation of ultra-thin carbon nanosheets, but also provides a new idea for the design and synthesis of high-performance carbon materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
A DFT analysis of enhanced structural, mechanical, elastic tensor analysis, optical, electronic, thermoelectric and magnetic characteristics of X2ScHgCl6 (X=Cs, Rb) Metastable wurtzite CuInS2@C3N4 for supercapacitor application Catalytic effect of TiF3 on hydrogenation and dehydrogenation of Mg-based hydrogen storage alloy prepared by milling Achieving over 28 % efficiency in inorganic halide perovskite Ca3AsI3: Optimization of electron transport layers via DFT, SCAPS-1D, and machine learning Exploring the structural, elastic, electronic, optical properties and thermoelectric properties of Na2XGaF6 (X = In, or Tl) double perovskite: DFT study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1