Carrier gas flow rate effects on additive-assisted low-temperature Y2O3 film deposition by atmospheric pressure plasma jet

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Materials Science in Semiconductor Processing Pub Date : 2025-02-12 DOI:10.1016/j.mssp.2025.109365
Bat-Orgil Erdenezaya , Md. Shahiduzzaman , Hirochika Uratani , Ruka Yazawa , Yusuke Nakano , Yasunori Tanaka , Tetsuya Taima , Tatsuo Ishijima
{"title":"Carrier gas flow rate effects on additive-assisted low-temperature Y2O3 film deposition by atmospheric pressure plasma jet","authors":"Bat-Orgil Erdenezaya ,&nbsp;Md. Shahiduzzaman ,&nbsp;Hirochika Uratani ,&nbsp;Ruka Yazawa ,&nbsp;Yusuke Nakano ,&nbsp;Yasunori Tanaka ,&nbsp;Tetsuya Taima ,&nbsp;Tatsuo Ishijima","doi":"10.1016/j.mssp.2025.109365","DOIUrl":null,"url":null,"abstract":"<div><div>Yttrium oxide (Y<sub>2</sub>O<sub>3</sub>) film shows great potential as a corrosive resistant material in harsh environments, but Y<sub>2</sub>O<sub>3</sub> film deposition methods require cost-effectiveness and high quality. To address these issues, we proposed a novel method of additive-enhancement to the Y<sub>2</sub>O<sub>3</sub> precursor solution in plasma enhanced metal–organic chemical vapor deposition. Using this approach, we achieved Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> film deposition at low cost, at low temperatures, and under atmospheric pressure conditions, specifically assisted by a microwave-excited plasma jet. Our results demonstrated that the Y<sub>2</sub>O<sub>3</sub> surface morphology quality is notably enhanced, exhibiting a marked increase in particle density with a granular shape and well-covered homogeneous uniform coverage, suggesting enhanced nucleation and rapid growth with the increase of the carrier gas (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) flow rate. Results show that the highest deposition rate for Y<sub>2</sub>O<sub>3</sub> film was achieved 87.5 nm/min. Grazing incidence X-ray diffractometry revealed excellent polycrystalline structure of Y<sub>2</sub>O<sub>3</sub> film. X-ray photoelectron spectroscopy indicated that an increased <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> flow rate shifts bonding from Y–O–Si to Y–O–C, revealing chemical interactions with organic residues or carbon-containing precursor solutions within the film. This method of using PE-MOCVD provides a new pathway to low-cost, low-temperature, and effective deposition of Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> films.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"191 ","pages":"Article 109365"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125001027","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Yttrium oxide (Y2O3) film shows great potential as a corrosive resistant material in harsh environments, but Y2O3 film deposition methods require cost-effectiveness and high quality. To address these issues, we proposed a novel method of additive-enhancement to the Y2O3 precursor solution in plasma enhanced metal–organic chemical vapor deposition. Using this approach, we achieved Y2O3 film deposition at low cost, at low temperatures, and under atmospheric pressure conditions, specifically assisted by a microwave-excited plasma jet. Our results demonstrated that the Y2O3 surface morphology quality is notably enhanced, exhibiting a marked increase in particle density with a granular shape and well-covered homogeneous uniform coverage, suggesting enhanced nucleation and rapid growth with the increase of the carrier gas (Qc) flow rate. Results show that the highest deposition rate for Y2O3 film was achieved 87.5 nm/min. Grazing incidence X-ray diffractometry revealed excellent polycrystalline structure of Y2O3 film. X-ray photoelectron spectroscopy indicated that an increased Qc flow rate shifts bonding from Y–O–Si to Y–O–C, revealing chemical interactions with organic residues or carbon-containing precursor solutions within the film. This method of using PE-MOCVD provides a new pathway to low-cost, low-temperature, and effective deposition of Y2O3 films.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
载气流速对常压等离子射流添加剂辅助低温 Y2O3 薄膜沉积的影响
氧化钇(Y2O3)薄膜在恶劣环境中作为耐腐蚀材料显示出巨大的潜力,但Y2O3薄膜沉积方法要求成本效益和高质量。为了解决这些问题,我们提出了一种在等离子体增强金属有机化学气相沉积中对Y2O3前驱体溶液进行添加剂增强的新方法。利用这种方法,我们在低成本、低温和常压条件下,特别是在微波激发等离子体射流的辅助下,实现了Y2O3薄膜的沉积。结果表明,Y2O3的表面形貌质量显著提高,颗粒密度显著增加,呈颗粒状,覆盖均匀均匀,表明随着载气(Qc)流速的增加,成核增强,生长迅速。结果表明,Y2O3薄膜的最高沉积速率为87.5 nm/min。掠入射x射线衍射显示Y2O3薄膜具有良好的多晶结构。x射线光电子能谱显示,随着Qc流速的增加,键合从Y-O-Si转变为Y-O-C,揭示了薄膜内与有机残留物或含碳前驱体溶液的化学相互作用。这种使用PE-MOCVD的方法为低成本、低温、高效地沉积Y2O3薄膜提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
期刊最新文献
Flexible multi-colour LEDs and junction-free emission Enhanced energy storage properties achieved in (1-x)(0.6Na0.5Bi0.5TiO3-0.4Sr0.7Bi0.2TiO3)-xBa0.6Ag0.4Mg0.2Nb0.8O3 ceramics at moderate electric field Monolithic inverters using GaN-based fin-gated multichannel complementary metal-oxide-semiconductor high-electron mobility transistors with source field plate Self-powered broadband photodetector based on vacuum-evaporated PbSe/SnSe2 heterostructure for encrypted optical communication Experimental study on the influencing factors of short-circuit characteristics of press-pack IGBTs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1