Perceptions of artificial intelligence among computed tomography technologists in Saudi Arabia: Influence of demographics and training on AI adoption

IF 1.7 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Journal of Radiation Research and Applied Sciences Pub Date : 2025-02-13 DOI:10.1016/j.jrras.2025.101355
Sami A. Alghamdi , Yazeed Alashban , Ali B. Alhailiy , Fahad F. Alharbi , Assma E. Al-Nahrawi
{"title":"Perceptions of artificial intelligence among computed tomography technologists in Saudi Arabia: Influence of demographics and training on AI adoption","authors":"Sami A. Alghamdi ,&nbsp;Yazeed Alashban ,&nbsp;Ali B. Alhailiy ,&nbsp;Fahad F. Alharbi ,&nbsp;Assma E. Al-Nahrawi","doi":"10.1016/j.jrras.2025.101355","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study evaluates the perceptions of computed tomography (CT) technologists in Saudi Arabia regarding the integration of artificial intelligence (AI) into radiology, focusing on the influence of demographic factors and prior AI training on their attitudes toward adopting AI in radiology.</div></div><div><h3>Methods</h3><div>A cross-sectional study was conducted using an online questionnaire distributed among CT technologists in various Saudi health-care facilities. The survey responses captured their demographic characteristics, exposure to AI training, and perceptions of the impact of AI on their workflows and career trajectories. Descriptive statistics were used to summarize categorical variables. Pearson's chi-square test was performed to evaluate associations between demographic/professional characteristics and AI perceptions. A p-value &lt;0.05 was considered statistically significant.</div></div><div><h3>Results</h3><div>A total of 396 CT technologists participated in the survey, with 82.8% employed in public hospitals and 81.3% holding a bachelor's degree. While 65% agreed that using AI would enhance their CT practices, their concerns about career disruption were minimal, with 80% disagreeing with the idea that AI would negatively impact their work roles. Limited AI training was reported, with only 9.1% receiving education during their formal studies and 19.2% from workplace initiatives. Significant associations were observed between perceptions of AI and various factors (≤0.05), such as type of hospital, years of experience, and training exposure to AI.</div></div><div><h3>Conclusion</h3><div>CT technologists in Saudi Arabia largely view AI as a positive addition to their radiology practices, but training gaps and resource disparities remain key challenges. Targeted educational programs and policies ensuring equitable access to AI resources are critical for fostering a well-prepared radiography workforce and facilitating seamless AI integration in radiology practices.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 2","pages":"Article 101355"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725000676","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study evaluates the perceptions of computed tomography (CT) technologists in Saudi Arabia regarding the integration of artificial intelligence (AI) into radiology, focusing on the influence of demographic factors and prior AI training on their attitudes toward adopting AI in radiology.

Methods

A cross-sectional study was conducted using an online questionnaire distributed among CT technologists in various Saudi health-care facilities. The survey responses captured their demographic characteristics, exposure to AI training, and perceptions of the impact of AI on their workflows and career trajectories. Descriptive statistics were used to summarize categorical variables. Pearson's chi-square test was performed to evaluate associations between demographic/professional characteristics and AI perceptions. A p-value <0.05 was considered statistically significant.

Results

A total of 396 CT technologists participated in the survey, with 82.8% employed in public hospitals and 81.3% holding a bachelor's degree. While 65% agreed that using AI would enhance their CT practices, their concerns about career disruption were minimal, with 80% disagreeing with the idea that AI would negatively impact their work roles. Limited AI training was reported, with only 9.1% receiving education during their formal studies and 19.2% from workplace initiatives. Significant associations were observed between perceptions of AI and various factors (≤0.05), such as type of hospital, years of experience, and training exposure to AI.

Conclusion

CT technologists in Saudi Arabia largely view AI as a positive addition to their radiology practices, but training gaps and resource disparities remain key challenges. Targeted educational programs and policies ensuring equitable access to AI resources are critical for fostering a well-prepared radiography workforce and facilitating seamless AI integration in radiology practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
期刊最新文献
Electromagnetic free convective flow of a radiative, chemically reactive hybrid nanofluid over a moving vertical surface: With effects of porous medium Numerical analysis of mixed convective stagnation point flow of a nanofluid over a rotating sphere with thermal radiation and slip effects Advanced time complexity analysis for real-time COVID-19 prediction in Saudi Arabia using LightGBM and XGBoost Impact of suction and blowing on radiative heat transfer of maxwell fluid with homogenous heterogenous reactions Real-time dosimetry in lung cancer radiotherapy using PET imaging of positrons induced by gold nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1