{"title":"Systems metabolic engineering of Corynebacterium glutamicum for efficient l-tryptophan production","authors":"Yufei Dong , Zhen Chen","doi":"10.1016/j.synbio.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div><em>Corynebacterium glutamicum</em> is a versatile industrial microorganism for producing various amino acids. However, there have been no reports of well-defined <em>C. glutamicum</em> strains capable of hyperproducing <span>l</span>-tryptophan. This study presents a comprehensive metabolic engineering approach to establish robust <em>C. glutamicum</em> strains for <span>l</span>-tryptophan biosynthesis, including: (1) identification of potential targets by enzyme-constrained genome-scale modeling; (2) enhancement of the <span>l</span>-tryptophan biosynthetic pathway; (3) reconfiguration of central metabolic pathways; (4) identification of metabolic bottlenecks through comparative metabolome analysis; (5) engineering of the transport system, shikimate pathway, and precursor supply; and (6) repression of competing pathways and iterative optimization of key targets. The resulting <em>C. glutamicum</em> strain achieved a remarkable <span>l</span>-tryptophan titer of 50.5 g/L in 48h with a yield of 0.17 g/g glucose in fed-batch fermentation. This study highlights the efficacy of integrating computational modeling with systems metabolic engineering for significantly enhancing the production capabilities of industrial microorganisms.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 2","pages":"Pages 511-522"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X25000109","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Corynebacterium glutamicum is a versatile industrial microorganism for producing various amino acids. However, there have been no reports of well-defined C. glutamicum strains capable of hyperproducing l-tryptophan. This study presents a comprehensive metabolic engineering approach to establish robust C. glutamicum strains for l-tryptophan biosynthesis, including: (1) identification of potential targets by enzyme-constrained genome-scale modeling; (2) enhancement of the l-tryptophan biosynthetic pathway; (3) reconfiguration of central metabolic pathways; (4) identification of metabolic bottlenecks through comparative metabolome analysis; (5) engineering of the transport system, shikimate pathway, and precursor supply; and (6) repression of competing pathways and iterative optimization of key targets. The resulting C. glutamicum strain achieved a remarkable l-tryptophan titer of 50.5 g/L in 48h with a yield of 0.17 g/g glucose in fed-batch fermentation. This study highlights the efficacy of integrating computational modeling with systems metabolic engineering for significantly enhancing the production capabilities of industrial microorganisms.
期刊介绍:
Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.