HearDrinking: Drunkenness detection and BACs predictions based on acoustic signal

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pervasive and Mobile Computing Pub Date : 2025-02-10 DOI:10.1016/j.pmcj.2025.102020
Yuan Wu , Gaorong Zhao , Likairui Zhang , Xinrong Hu , Lei Ding
{"title":"HearDrinking: Drunkenness detection and BACs predictions based on acoustic signal","authors":"Yuan Wu ,&nbsp;Gaorong Zhao ,&nbsp;Likairui Zhang ,&nbsp;Xinrong Hu ,&nbsp;Lei Ding","doi":"10.1016/j.pmcj.2025.102020","DOIUrl":null,"url":null,"abstract":"<div><div>Alcohol poisoning is a severe health concern resulting from excessive drinking and can be life-threatening. By utilizing home monitoring, individuals can quickly determine their blood alcohol content, thus preventing it from reaching hazardous levels. However, most existing systems for drunkenness detection require extra hardware or much effort from the user, making these systems impractical for detecting drunkenness in real life. Motivated by this, we present a device-free, noise-resistant drunkenness detection system named HearDrinking based on smartphone, which utilizes microphone of smartphone to record human’s voice activity, then mine drunkenness related features to yield accurate drunkenness detection. However, using acoustic signal to detect drunkenness is non-trivial since voice activities are prone to be interfered by ambient noise, and extracting fine-grained representations related to drunkenness from voice activities remains unresolved. On one hand, HearDrinking employs a multi-modal fusion method to realize noise-resistant voice activity detection. On the other hand, HearDrinking initially calculates the log-Mel spectrograms from the speech signal. The log-Mel spectrograms contain temporal and spectral information absent in image data. Therefore, conventional convolutions designed for images often have limited effectiveness in extracting features from log-Mel spectrograms. To overcome this limitation, we integrate Omni-dimensional Dynamic Convolution (ODConv) with ShuffleNetV2, creating OD-ShuffleNetV2. ODConv replaces certain conventional convolutions in the ShuffleNetV2 network. Multiple convolution cores are fused based on the log-Mel spectrogram, taking into account multi-dimensional attention, thereby optimizing the network structure. Comprehensive experiments with 15 participants reveal drunkenness detection accuracy of 96.08% and Blood Alcohol Content (BAC) predictions with an average error of 5 mg/dl.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"108 ","pages":"Article 102020"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119225000094","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Alcohol poisoning is a severe health concern resulting from excessive drinking and can be life-threatening. By utilizing home monitoring, individuals can quickly determine their blood alcohol content, thus preventing it from reaching hazardous levels. However, most existing systems for drunkenness detection require extra hardware or much effort from the user, making these systems impractical for detecting drunkenness in real life. Motivated by this, we present a device-free, noise-resistant drunkenness detection system named HearDrinking based on smartphone, which utilizes microphone of smartphone to record human’s voice activity, then mine drunkenness related features to yield accurate drunkenness detection. However, using acoustic signal to detect drunkenness is non-trivial since voice activities are prone to be interfered by ambient noise, and extracting fine-grained representations related to drunkenness from voice activities remains unresolved. On one hand, HearDrinking employs a multi-modal fusion method to realize noise-resistant voice activity detection. On the other hand, HearDrinking initially calculates the log-Mel spectrograms from the speech signal. The log-Mel spectrograms contain temporal and spectral information absent in image data. Therefore, conventional convolutions designed for images often have limited effectiveness in extracting features from log-Mel spectrograms. To overcome this limitation, we integrate Omni-dimensional Dynamic Convolution (ODConv) with ShuffleNetV2, creating OD-ShuffleNetV2. ODConv replaces certain conventional convolutions in the ShuffleNetV2 network. Multiple convolution cores are fused based on the log-Mel spectrogram, taking into account multi-dimensional attention, thereby optimizing the network structure. Comprehensive experiments with 15 participants reveal drunkenness detection accuracy of 96.08% and Blood Alcohol Content (BAC) predictions with an average error of 5 mg/dl.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
期刊最新文献
HearDrinking: Drunkenness detection and BACs predictions based on acoustic signal Climate smart computing: A perspective A Real-time skeleton-based fall detection algorithm based on temporal convolutional networks and transformer encoder FastPlan: A three-step framework for accelerating drone-centric search operations in post-disaster relief Enhancing crowdsourcing through skill and willingness-aligned task assignment with workforce composition balance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1