Ruoyu Xiong , Longmei Wu , Xiaozhe Bao , Bin Zhang , Liming Cao , Taotao Yang
{"title":"Increasing seedling number alleviates the adverse effects of warming on grain yield and reduces greenhouse gas emission in late-season rice","authors":"Ruoyu Xiong , Longmei Wu , Xiaozhe Bao , Bin Zhang , Liming Cao , Taotao Yang","doi":"10.1016/j.crope.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>To address the adverse effects of warming on late-season rice, we investigated the impact of increasing the number of seedlings on rice yield, quality, and greenhouse gas (GHG) emissions under canopy warming conditions using the free-air temperature increase (FATI) system. Three treatments were implemented: ambient temperature with two seedlings hill<sup>-1</sup> (CKS1), canopy warming with two seedlings hill<sup>-1</sup> (WS1), and canopy warming with four seedlings hill<sup>-1</sup> (WS2). FATI increased rice canopy temperature and soil temperature by an average of 1.9–2.2°C and 0.6–0.8°C, respectively, over the two years. The yield in WS1 was significantly reduced by 10.1%–12.1% compared with CKS1, which was attributed to a significant decrease in total spikelets m<sup>-2</sup> and spikelets panicle<sup>-1</sup>, despite a notable increase in filled grains in 2023. However, WS2 demonstrated no significant change in yield compared with CKS1. Analysis of yield components revealed that WS2 exhibited significantly higher panicles m<sup>-</sup><sup>2</sup> than CKS1, while the spikelets panicle<sup>-1</sup> were significantly lower than CKS1. No significant changes were observed in grain weight and processing and appearance qualities. Compared with that under CKS1, CH<sub>4</sub> was significantly reduced under WS2 treatment in both years, and the global warming potential (GWP) and GHG intensity (GHGI) showed a decrease, with notable differences observed in 2022. Therefore, increasing the number of seedlings hill<sup>-1</sup> can alleviate the negative impacts of canopy warming on grain yield and reduce GHG emissions in late-season rice.</div></div>","PeriodicalId":100340,"journal":{"name":"Crop and Environment","volume":"4 1","pages":"Pages 14-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773126X24000418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To address the adverse effects of warming on late-season rice, we investigated the impact of increasing the number of seedlings on rice yield, quality, and greenhouse gas (GHG) emissions under canopy warming conditions using the free-air temperature increase (FATI) system. Three treatments were implemented: ambient temperature with two seedlings hill-1 (CKS1), canopy warming with two seedlings hill-1 (WS1), and canopy warming with four seedlings hill-1 (WS2). FATI increased rice canopy temperature and soil temperature by an average of 1.9–2.2°C and 0.6–0.8°C, respectively, over the two years. The yield in WS1 was significantly reduced by 10.1%–12.1% compared with CKS1, which was attributed to a significant decrease in total spikelets m-2 and spikelets panicle-1, despite a notable increase in filled grains in 2023. However, WS2 demonstrated no significant change in yield compared with CKS1. Analysis of yield components revealed that WS2 exhibited significantly higher panicles m-2 than CKS1, while the spikelets panicle-1 were significantly lower than CKS1. No significant changes were observed in grain weight and processing and appearance qualities. Compared with that under CKS1, CH4 was significantly reduced under WS2 treatment in both years, and the global warming potential (GWP) and GHG intensity (GHGI) showed a decrease, with notable differences observed in 2022. Therefore, increasing the number of seedlings hill-1 can alleviate the negative impacts of canopy warming on grain yield and reduce GHG emissions in late-season rice.