Xinyu Wang , Chao Zhang , Cancan Zhang , Hexin Sun , Yuting Wu
{"title":"A comprehensive updated research progress of key technologies of linear concentrated solar power from material to application","authors":"Xinyu Wang , Chao Zhang , Cancan Zhang , Hexin Sun , Yuting Wu","doi":"10.1016/j.solmat.2025.113492","DOIUrl":null,"url":null,"abstract":"<div><div>Solar energy is an important renewable energy and will play a significant role in future global electricity production. A comprehensively review overview of linear concentrated solar power is studied which is a unique technique that includes parabolic trough collector and linear Fresnel reflector. Some crucial aspects have been summarized and prospected on concentrating system, heat collecting system and heat storage system. Research on concentrating system includes the mirror field of parabolic trough collector, primary mirror field and secondary concentrators of linear Fresnel reflector. Research on heat collecting system includes inner collector coating, heat transfer fluid and enhanced heat transfer technology. Research on heat storage system includes heat storage molten salt and storage tank. Lastly, the potential research directions and future research hotspots of these technologies are prospected. The mirror field structure should be optimized the distribution of surface energy flux density on the collector tube in parabolic trough collector, while in linear Fresnel reflector improve the optical efficiency. Molten salt is one of the best heat transfer fluid for high temperature power generation in the concentrated solar power system. Inserts, fins and shaped tubes are used to enhance heat transfer for collector. Developing molten salt with a wider working temperature range and more stable physical and chemical properties is a hot research direction.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113492"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825000935","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar energy is an important renewable energy and will play a significant role in future global electricity production. A comprehensively review overview of linear concentrated solar power is studied which is a unique technique that includes parabolic trough collector and linear Fresnel reflector. Some crucial aspects have been summarized and prospected on concentrating system, heat collecting system and heat storage system. Research on concentrating system includes the mirror field of parabolic trough collector, primary mirror field and secondary concentrators of linear Fresnel reflector. Research on heat collecting system includes inner collector coating, heat transfer fluid and enhanced heat transfer technology. Research on heat storage system includes heat storage molten salt and storage tank. Lastly, the potential research directions and future research hotspots of these technologies are prospected. The mirror field structure should be optimized the distribution of surface energy flux density on the collector tube in parabolic trough collector, while in linear Fresnel reflector improve the optical efficiency. Molten salt is one of the best heat transfer fluid for high temperature power generation in the concentrated solar power system. Inserts, fins and shaped tubes are used to enhance heat transfer for collector. Developing molten salt with a wider working temperature range and more stable physical and chemical properties is a hot research direction.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.