Iveta Bečková , Štefan Pócoš , Giulia Belgiovine , Marco Matarese , Omar Eldardeer , Alessandra Sciutti , Carlo Mazzola
{"title":"A multi-modal explainability approach for human-aware robots in multi-party conversation","authors":"Iveta Bečková , Štefan Pócoš , Giulia Belgiovine , Marco Matarese , Omar Eldardeer , Alessandra Sciutti , Carlo Mazzola","doi":"10.1016/j.cviu.2025.104304","DOIUrl":null,"url":null,"abstract":"<div><div>The addressee estimation (understanding to whom somebody is talking) is a fundamental task for human activity recognition in multi-party conversation scenarios. Specifically, in the field of human–robot interaction, it becomes even more crucial to enable social robots to participate in such interactive contexts. However, it is usually implemented as a binary classification task, restricting the robot’s capability to estimate whether it was addressed or not, which limits its interactive skills. For a social robot to gain the trust of humans, it is also important to manifest a certain level of transparency and explainability. Explainable artificial intelligence thus plays a significant role in the current machine learning applications and models, to provide explanations for their decisions besides excellent performance. In our work, we (a) present an addressee estimation model with improved performance in comparison with the previous state-of-the-art; (b) further modify this model to include inherently explainable attention-based segments; (c) implement the explainable addressee estimation as part of a modular cognitive architecture for multi-party conversation in an iCub robot; (d) validate the real-time performance of the explainable model in multi-party human–robot interaction; (e) propose several ways to incorporate explainability and transparency in the aforementioned architecture; and (f) perform an online user study to analyze the effect of various explanations on how human participants perceive the robot.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"253 ","pages":"Article 104304"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422500027X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The addressee estimation (understanding to whom somebody is talking) is a fundamental task for human activity recognition in multi-party conversation scenarios. Specifically, in the field of human–robot interaction, it becomes even more crucial to enable social robots to participate in such interactive contexts. However, it is usually implemented as a binary classification task, restricting the robot’s capability to estimate whether it was addressed or not, which limits its interactive skills. For a social robot to gain the trust of humans, it is also important to manifest a certain level of transparency and explainability. Explainable artificial intelligence thus plays a significant role in the current machine learning applications and models, to provide explanations for their decisions besides excellent performance. In our work, we (a) present an addressee estimation model with improved performance in comparison with the previous state-of-the-art; (b) further modify this model to include inherently explainable attention-based segments; (c) implement the explainable addressee estimation as part of a modular cognitive architecture for multi-party conversation in an iCub robot; (d) validate the real-time performance of the explainable model in multi-party human–robot interaction; (e) propose several ways to incorporate explainability and transparency in the aforementioned architecture; and (f) perform an online user study to analyze the effect of various explanations on how human participants perceive the robot.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems