Minh Long Hoang , Guido Matrella , Paolo Ciampolini
{"title":"Metrological evaluation of contactless sleep position recognition using an accelerometric smart bed and machine learning","authors":"Minh Long Hoang , Guido Matrella , Paolo Ciampolini","doi":"10.1016/j.sna.2025.116309","DOIUrl":null,"url":null,"abstract":"<div><div>Precise categorization of sleep postures is essential for evaluating overall physical and mental condition. A smart bed was constructed with the microelectromechanical systems (MEMS) accelerometer sensor and an STM 32-bit microcontroller board. This work applies machine learning (ML) methods to acceleration data to accurately categorize four main sleep positions: right side, left side, prone, and supine without any wearable devices. In this work, the efficiency of 9 ML methods is examined. These algorithms include Logistic Regression (LR) with one-vs-rest and multinomial logistic regression types, Linear Discriminant Analysis (LDA), K-Nearest Neighbors Classification (KNN), Classification and Regression Trees (CART), Naive Bayes (NB), Support Vector Machines (SVMs) with one-vs-one and one-vs-rest types, and Random Forest (RF). The best hyperparameters of each model was accomplished, based on GridSearchCV. The K-fold cross-validation with the assessing measurement stability results indicate that the LG-OvR, LDA, and RF models have the best performance, whereas LG-OvR model possesses accuracy rates of almost 99 %. Furthermore, precision, recall and F1-score are calculated with minimum value of 0.95 for all chosen models. The training and test time are also presented for the selected models. This research has important implications for healthcare, sports medicine, and ergonomics, demonstrating the potential of Artificial Intelligence (AI) approaches in improving sleep monitoring methods.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"385 ","pages":"Article 116309"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725001153","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Precise categorization of sleep postures is essential for evaluating overall physical and mental condition. A smart bed was constructed with the microelectromechanical systems (MEMS) accelerometer sensor and an STM 32-bit microcontroller board. This work applies machine learning (ML) methods to acceleration data to accurately categorize four main sleep positions: right side, left side, prone, and supine without any wearable devices. In this work, the efficiency of 9 ML methods is examined. These algorithms include Logistic Regression (LR) with one-vs-rest and multinomial logistic regression types, Linear Discriminant Analysis (LDA), K-Nearest Neighbors Classification (KNN), Classification and Regression Trees (CART), Naive Bayes (NB), Support Vector Machines (SVMs) with one-vs-one and one-vs-rest types, and Random Forest (RF). The best hyperparameters of each model was accomplished, based on GridSearchCV. The K-fold cross-validation with the assessing measurement stability results indicate that the LG-OvR, LDA, and RF models have the best performance, whereas LG-OvR model possesses accuracy rates of almost 99 %. Furthermore, precision, recall and F1-score are calculated with minimum value of 0.95 for all chosen models. The training and test time are also presented for the selected models. This research has important implications for healthcare, sports medicine, and ergonomics, demonstrating the potential of Artificial Intelligence (AI) approaches in improving sleep monitoring methods.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...