{"title":"Concentration phenomena of normalized solutions for a fractional p-Laplacian Schrödinger–Choquard system in RN","authors":"Yuxuan Tong , Thin Van Nguyen , Sihua Liang","doi":"10.1016/j.cnsns.2025.108665","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following Schrödinger–Choquard system in <span><math><mi>R</mi></math></span><sup><em>N</em></sup> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>ɛ</mi><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>N</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac><mo>∗</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>β</mi><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>ɛ</mi><mi>x</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>N</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac><mo>∗</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>]</mo></mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>β</mi><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo><mspace></mspace><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msubsup><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup></math></span> is the fractional <span><math><mi>p</mi></math></span>-Laplacian operator, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>p</mi><mo>+</mo><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>s</mi></mrow><mrow><mi>N</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> is a parameter, <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> <span><math><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>></mo><mn>0</mn></mrow></math></span> are prescribed, <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are the Lagrange multipliers to be determined, the nonlinear functions <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are continuous, and the potential functions <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> satisfy some suitable conditions. With the aid of the Ljusternik–Schnirelmann category theory and variational methods, we obtain the multiplicity and concentration phenomena of normalized solutions for the above system. As far as we know, this study is the first contribution regarding the concentration and multiplicity properties of normalized solutions for fractional <span><math><mi>p</mi></math></span>-Laplacian Schrödinger–Choquard system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. To some extent, the main results included in this paper complement several recent contributions to the study of nonlinear Schrödinger systems (Chen and Zou, 2021; Gou and Jeanjean, 2016).</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"144 ","pages":"Article 108665"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425000760","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the following Schrödinger–Choquard system in Nwhere is the fractional -Laplacian operator, , , , , is a parameter, and are prescribed, are the Lagrange multipliers to be determined, the nonlinear functions are continuous, and the potential functions satisfy some suitable conditions. With the aid of the Ljusternik–Schnirelmann category theory and variational methods, we obtain the multiplicity and concentration phenomena of normalized solutions for the above system. As far as we know, this study is the first contribution regarding the concentration and multiplicity properties of normalized solutions for fractional -Laplacian Schrödinger–Choquard system in . To some extent, the main results included in this paper complement several recent contributions to the study of nonlinear Schrödinger systems (Chen and Zou, 2021; Gou and Jeanjean, 2016).
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.