Study of electrical conductivity in epoxy-based adhesives and polyurethane adhesives through the addition of graphene nanoplatelets before and after thermal aging
Marta García-Moreno, Cristina Alía, César Domínguez, Lucía Garijo, Fernando Gómez
{"title":"Study of electrical conductivity in epoxy-based adhesives and polyurethane adhesives through the addition of graphene nanoplatelets before and after thermal aging","authors":"Marta García-Moreno, Cristina Alía, César Domínguez, Lucía Garijo, Fernando Gómez","doi":"10.1016/j.ijadhadh.2025.103973","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the electrical conductivity of two commercial adhesives—epoxy-based and polyurethane-based—reinforced with varying concentrations of graphene nanoplatelets (GNPs) (0–30 % by volume) and evaluates the influence of thermal aging on this property. Using a custom-designed two-prong uniaxial measurement method that accounts for specimen volume and current pathways, the results reveal a consistent increase in conductivity with higher GNP concentrations. Across all concentrations, the polyurethane adhesive exhibited superior conductivity compared to the epoxy-based adhesive. Notably, the addition of 30 % GNPs doubled the conductivity in both adhesives relative to their unreinforced counterparts. Thermal aging, performed at 70 °C for 16 h, further enhanced conductivity for both adhesives, particularly at lower GNP concentrations for epoxy and across nearly all concentrations for polyurethane, with increases of up to 200 %. These improvements are attributed to more complete polymerization during aging, optimizing the conductive pathways. The findings highlight the potential of GNP-reinforced adhesives for applications requiring enhanced electrical properties.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"139 ","pages":"Article 103973"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000405","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the electrical conductivity of two commercial adhesives—epoxy-based and polyurethane-based—reinforced with varying concentrations of graphene nanoplatelets (GNPs) (0–30 % by volume) and evaluates the influence of thermal aging on this property. Using a custom-designed two-prong uniaxial measurement method that accounts for specimen volume and current pathways, the results reveal a consistent increase in conductivity with higher GNP concentrations. Across all concentrations, the polyurethane adhesive exhibited superior conductivity compared to the epoxy-based adhesive. Notably, the addition of 30 % GNPs doubled the conductivity in both adhesives relative to their unreinforced counterparts. Thermal aging, performed at 70 °C for 16 h, further enhanced conductivity for both adhesives, particularly at lower GNP concentrations for epoxy and across nearly all concentrations for polyurethane, with increases of up to 200 %. These improvements are attributed to more complete polymerization during aging, optimizing the conductive pathways. The findings highlight the potential of GNP-reinforced adhesives for applications requiring enhanced electrical properties.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.