{"title":"A self-adaptive physics-informed neural networks method for large strain consolidation analysis","authors":"Hang Zhou , Han Wu , Brian Sheil , Zhuhong Wang","doi":"10.1016/j.compgeo.2025.107131","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-Informed Neural Networks (PINNs) have shown considerable potential in solving both forward and inverse problems governed by partial differential equations (PDEs) for a wide range of practical applications. This study leverages PINNs for modeling nonlinear large-strain consolidation of soft soil, including creep behavior. The inherent material and geometric nonlinearities associated with soft soil consolidation pose challenges for PINNs, including precision and computational efficiency. To address these issues, we introduce self-adaptive physics-informed neural networks (SA-PINNs), featuring an adaptive loss function weighting and a slope scaling method for the activation functions. Additionally, a sensitivity analysis exploring the influence of monitoring data on the parameter inversion accuracy is presented. Two engineering case studies are used to benchmark the settlement prediction capabilities of the present SA-PINN method with traditional techniques, demonstrating the superior prediction accuracy and consistency of the SA-PINN approach. The findings highlight the significant potential of SA-PINN in practical geotechnical engineering problems.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107131"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000801","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-Informed Neural Networks (PINNs) have shown considerable potential in solving both forward and inverse problems governed by partial differential equations (PDEs) for a wide range of practical applications. This study leverages PINNs for modeling nonlinear large-strain consolidation of soft soil, including creep behavior. The inherent material and geometric nonlinearities associated with soft soil consolidation pose challenges for PINNs, including precision and computational efficiency. To address these issues, we introduce self-adaptive physics-informed neural networks (SA-PINNs), featuring an adaptive loss function weighting and a slope scaling method for the activation functions. Additionally, a sensitivity analysis exploring the influence of monitoring data on the parameter inversion accuracy is presented. Two engineering case studies are used to benchmark the settlement prediction capabilities of the present SA-PINN method with traditional techniques, demonstrating the superior prediction accuracy and consistency of the SA-PINN approach. The findings highlight the significant potential of SA-PINN in practical geotechnical engineering problems.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.