{"title":"Hydrothermal behaviors of geomaterials with multiple fracture channels: Effect of intersecting “X” and “Y” shape fractures","authors":"Shi-Feng Lu , Xiao-Pei Guo , Teng-Yuan Zhao , Ling Xu","doi":"10.1016/j.compgeo.2025.107121","DOIUrl":null,"url":null,"abstract":"<div><div>The water flow and heat transfer characteristics within fractured geomaterials have significant practical applications in various fields, including deep geothermal resource development and oil and gas extraction. However, the presence of numerous intersecting fracture networks in geothermal systems complicates the hydrothermal coupling process in fractured geomaterials. Therefore, in this study, a multiphase microcontinuum approach is introduced to systematically study the hydrothermal coupling behavior in a multichannel fractured rock mass. Initially, a numerical model for water flow and heat transfer in fractured rock masses was established, and the accuracy and reliability of the multiphase microcontinuum method were verified through experiments. Two representative intersecting fractures in the rock mass, namely, “X”-shaped and “Y”-shaped fractures, were subsequently considered to delve into the effects of key parameters, such as the fracture aperture, water injection velocity, intersection angle of fractures, and water injection strategy, on the heat transfer performance of the fractured rock mass. Additionally, rock with parallel fracture channels was established to compare and investigate the heat transfer effect between water and rock masses with different fracture channel shapes. The results indicate that the fracture aperture, water flow rate, and intersection angle of fractures have substantial control over the heat transfer effect in fractured rock masses, whereas adjustments to the water injection method have a limited overall impact on the final heat transfer effect. Compared with single fracture channels, multichannel fractures can effectively enhance the heat transfer effect, and the shape and distribution of fracture channels significantly influence the heat exchange efficiency of fractured rock masses.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"181 ","pages":"Article 107121"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25000709","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The water flow and heat transfer characteristics within fractured geomaterials have significant practical applications in various fields, including deep geothermal resource development and oil and gas extraction. However, the presence of numerous intersecting fracture networks in geothermal systems complicates the hydrothermal coupling process in fractured geomaterials. Therefore, in this study, a multiphase microcontinuum approach is introduced to systematically study the hydrothermal coupling behavior in a multichannel fractured rock mass. Initially, a numerical model for water flow and heat transfer in fractured rock masses was established, and the accuracy and reliability of the multiphase microcontinuum method were verified through experiments. Two representative intersecting fractures in the rock mass, namely, “X”-shaped and “Y”-shaped fractures, were subsequently considered to delve into the effects of key parameters, such as the fracture aperture, water injection velocity, intersection angle of fractures, and water injection strategy, on the heat transfer performance of the fractured rock mass. Additionally, rock with parallel fracture channels was established to compare and investigate the heat transfer effect between water and rock masses with different fracture channel shapes. The results indicate that the fracture aperture, water flow rate, and intersection angle of fractures have substantial control over the heat transfer effect in fractured rock masses, whereas adjustments to the water injection method have a limited overall impact on the final heat transfer effect. Compared with single fracture channels, multichannel fractures can effectively enhance the heat transfer effect, and the shape and distribution of fracture channels significantly influence the heat exchange efficiency of fractured rock masses.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.