Hadronic top quark polarimetry with ParticleNet

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Physics Letters B Pub Date : 2025-02-11 DOI:10.1016/j.physletb.2025.139314
Zhongtian Dong , Dorival Gonçalves , Kyoungchul Kong , Andrew J. Larkoski , Alberto Navarro
{"title":"Hadronic top quark polarimetry with ParticleNet","authors":"Zhongtian Dong ,&nbsp;Dorival Gonçalves ,&nbsp;Kyoungchul Kong ,&nbsp;Andrew J. Larkoski ,&nbsp;Alberto Navarro","doi":"10.1016/j.physletb.2025.139314","DOIUrl":null,"url":null,"abstract":"<div><div>Precision studies for top quark physics are a cornerstone of the Large Hadron Collider program. Polarization, probed through decay kinematics, provides a unique tool to scrutinize the top quark across its various production modes and to explore potential new physics effects. However, the top quark most often decays hadronically, for which unambiguous identification of its decay products sensitive to top quark polarization is not possible. In this Letter, we introduce a jet flavor tagging method to significantly improve spin analyzing power in hadronic decays, going beyond exclusive kinematic information employed in previous studies. We provide parametric estimates of the improvement from flavor tagging with any set of measured observables and demonstrate this in practice on simulated data using a Graph Neural Network (GNN). We find that the spin analyzing power in hadronic decays can improve by approximately 20% (40%) compared to the kinematic approach, assuming an efficiency of 0.5 (0.2) for the network.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"862 ","pages":"Article 139314"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325000747","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Precision studies for top quark physics are a cornerstone of the Large Hadron Collider program. Polarization, probed through decay kinematics, provides a unique tool to scrutinize the top quark across its various production modes and to explore potential new physics effects. However, the top quark most often decays hadronically, for which unambiguous identification of its decay products sensitive to top quark polarization is not possible. In this Letter, we introduce a jet flavor tagging method to significantly improve spin analyzing power in hadronic decays, going beyond exclusive kinematic information employed in previous studies. We provide parametric estimates of the improvement from flavor tagging with any set of measured observables and demonstrate this in practice on simulated data using a Graph Neural Network (GNN). We find that the spin analyzing power in hadronic decays can improve by approximately 20% (40%) compared to the kinematic approach, assuming an efficiency of 0.5 (0.2) for the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
期刊最新文献
Retuning radio astronomy for axion dark matter with neutron stars Finding interaction mechanism between exotic molecule and conventional hadron Probing the curvature of the cosmos from quantum entanglement due to gravity Emergence of magnetic dipole band in 88Sr due to novel stretched coupling scheme Likelihood of a zero in the proton elastic electric form factor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1