A two-stage probabilistic flexibility management model for aggregated residential buildings

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-02-08 DOI:10.1016/j.enbuild.2025.115404
Saeed Akbari , João Martins , Luis M. Camarinha-Matos , Giovanni Petrone
{"title":"A two-stage probabilistic flexibility management model for aggregated residential buildings","authors":"Saeed Akbari ,&nbsp;João Martins ,&nbsp;Luis M. Camarinha-Matos ,&nbsp;Giovanni Petrone","doi":"10.1016/j.enbuild.2025.115404","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing integration of renewable energy resources into power systems introduces variability and uncertainty, challenging the availability of flexible resources required to maintain grid stability. Traditionally, flexible ramping relies on conventional generation with fixed capacities, highlighting the need for alternative flexible resources. This study focuses on demand-side resources, such as aggregated residential buildings forming collaborative energy ecosystems with dispatchable flexible assets, as a promising solution to address these challenges. This paper proposes a two-stage probabilistic model for managing the flexibility of aggregated buildings, focusing on maximizing ramping capacity from energy storage systems, thermal loads, and shiftable appliances during intra-day periods. In the first stage, buildings operate normally, optimizing energy exchange based on electricity prices. In the second stage, buildings coordinate in response to aggregator signals by imposing a strategy of maximum anticipation or delay to manage energy exchange. The aggregator then assesses the total potential ramping capacities for market participation. Numerical results and sensitivity analyses demonstrate the model’s effectiveness in accurately assessing aggregated ramp capacity. The findings reveal that the proposed approach significantly enhances residential building flexibility, providing accurate assessments of their contribution to grid stability and enabling efficient participation in flexibility markets.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"332 ","pages":"Article 115404"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825001343","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing integration of renewable energy resources into power systems introduces variability and uncertainty, challenging the availability of flexible resources required to maintain grid stability. Traditionally, flexible ramping relies on conventional generation with fixed capacities, highlighting the need for alternative flexible resources. This study focuses on demand-side resources, such as aggregated residential buildings forming collaborative energy ecosystems with dispatchable flexible assets, as a promising solution to address these challenges. This paper proposes a two-stage probabilistic model for managing the flexibility of aggregated buildings, focusing on maximizing ramping capacity from energy storage systems, thermal loads, and shiftable appliances during intra-day periods. In the first stage, buildings operate normally, optimizing energy exchange based on electricity prices. In the second stage, buildings coordinate in response to aggregator signals by imposing a strategy of maximum anticipation or delay to manage energy exchange. The aggregator then assesses the total potential ramping capacities for market participation. Numerical results and sensitivity analyses demonstrate the model’s effectiveness in accurately assessing aggregated ramp capacity. The findings reveal that the proposed approach significantly enhances residential building flexibility, providing accurate assessments of their contribution to grid stability and enabling efficient participation in flexibility markets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
A study of occupant performance under varying indoor thermal conditions during summer in India Students’ thermal and indoor air quality perception in secondary schools in a Mediterranean climate Editorial Board Frost resilient energy recovery ventilation system for dwellings in Canada’s North and Arctic: A comparative study between a regenerative dual core and conventional single core systems Dynamic life cycle environmental impact assessment for urban built environment based on BIM and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1