Xin Huang , Qikun Xie , Shaolin Li , Hongyu Qi , Xiaoguang Yang , Duoqi Shi
{"title":"Oxygen-assisted cracking behavior model based on phase-field fracture framework","authors":"Xin Huang , Qikun Xie , Shaolin Li , Hongyu Qi , Xiaoguang Yang , Duoqi Shi","doi":"10.1016/j.apm.2025.115988","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidation can have a major effect on the crack growth behavior of components working at high temperatures. However, phase-field (PF) fracture models considering oxidation are lacking. This study proposes a PF framework specifically designed for oxygen-assisted cracking. The model builds on the dynamic embrittlement behavior caused by oxygen, and an oxygen-related fracture-toughness degradation function is established. Then, this model is extended to fatigue, creep, and creep-fatigue cracks by employing the corresponding PF model. The model is validated using several examples. Specifically, (i) fatigue cracks for compact tension specimens, (ii) creep cracks for compact tension specimens, and (iii) creep-fatigue cracks for compact tension and shear specimens are simulated. The simulation results are consistent with the experimental results, proving the predictive ability of the proposed framework.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"143 ","pages":"Article 115988"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25000630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidation can have a major effect on the crack growth behavior of components working at high temperatures. However, phase-field (PF) fracture models considering oxidation are lacking. This study proposes a PF framework specifically designed for oxygen-assisted cracking. The model builds on the dynamic embrittlement behavior caused by oxygen, and an oxygen-related fracture-toughness degradation function is established. Then, this model is extended to fatigue, creep, and creep-fatigue cracks by employing the corresponding PF model. The model is validated using several examples. Specifically, (i) fatigue cracks for compact tension specimens, (ii) creep cracks for compact tension specimens, and (iii) creep-fatigue cracks for compact tension and shear specimens are simulated. The simulation results are consistent with the experimental results, proving the predictive ability of the proposed framework.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.