Optimizing steel fiber content and holding time for enhanced mechanical properties of UHPC prepared via prepressure technology

IF 7.4 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Construction and Building Materials Pub Date : 2025-02-12 DOI:10.1016/j.conbuildmat.2025.140099
Yongze Li , Chunxiao Zhang , Jize Mao , Jingbiao Liu , Junlei Wang , Shaohua Cao , Xingwei Cao
{"title":"Optimizing steel fiber content and holding time for enhanced mechanical properties of UHPC prepared via prepressure technology","authors":"Yongze Li ,&nbsp;Chunxiao Zhang ,&nbsp;Jize Mao ,&nbsp;Jingbiao Liu ,&nbsp;Junlei Wang ,&nbsp;Shaohua Cao ,&nbsp;Xingwei Cao","doi":"10.1016/j.conbuildmat.2025.140099","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical properties of concrete are the key indicators for determining the bearing capacity, stability, safety and durability of a structure. The excellent mechanical properties of concrete under strong dynamic loading can reduce or even eliminate damage to the structure. Prepressure technology is more effective in enhancing the compressive strength of concrete. Therefore, this paper uses the prepressure method to design corresponding molds and prepressure processes for samples of different geometric sizes. By setting different steel fiber volume fractions, preloading gradients and continuous preloading times, the axial compressive strength, elastic modulus and compressive strength of cylindrical and cubic samples were tested, and the influences of preloading and holding time on the mechanical properties and the ratio between the compressive strengths of cylindrical and cubic samples were obtained. The results show that the compressive strength at 9 MPa is 50.6 % (SF0), 112.0 % (SF2) and 127.0 % (SF4) greater than that at 0 MPa, and the highest cube compressive strength is 281.1 MPa. The strength growth, mechanical property changes and apparent damage mode of ultra-high performance concrete (UHPC) were revealed via microcomputed tomography(micro-CT), mercury intrusion tests (MIPs) and scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to synchronize the hydration process of the UHPC.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"467 ","pages":"Article 140099"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825002478","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of concrete are the key indicators for determining the bearing capacity, stability, safety and durability of a structure. The excellent mechanical properties of concrete under strong dynamic loading can reduce or even eliminate damage to the structure. Prepressure technology is more effective in enhancing the compressive strength of concrete. Therefore, this paper uses the prepressure method to design corresponding molds and prepressure processes for samples of different geometric sizes. By setting different steel fiber volume fractions, preloading gradients and continuous preloading times, the axial compressive strength, elastic modulus and compressive strength of cylindrical and cubic samples were tested, and the influences of preloading and holding time on the mechanical properties and the ratio between the compressive strengths of cylindrical and cubic samples were obtained. The results show that the compressive strength at 9 MPa is 50.6 % (SF0), 112.0 % (SF2) and 127.0 % (SF4) greater than that at 0 MPa, and the highest cube compressive strength is 281.1 MPa. The strength growth, mechanical property changes and apparent damage mode of ultra-high performance concrete (UHPC) were revealed via microcomputed tomography(micro-CT), mercury intrusion tests (MIPs) and scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to synchronize the hydration process of the UHPC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
期刊最新文献
The role of the gasification forest fly ash (GFF) in geopolymerization Hydration and microstructural development of cement pastes incorporating diatomaceous earth, expanded perlite, and shape-stabilized phase change materials (SSPCMs) Effects of red mud, desert sand, and ground granulated blast furnace slag on the mechanical properties and microstructure of fly ash-based geopolymer Non-destructive evaluation of micro-damage near concrete anchors under dynamic loading Research and development of a new type of cement-based anti-scouring rapid setting grouting material and performance research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1