Tao Xiang , Mohammad Khosravi , Ali Khosravi , Henry Bokuniewicz , Ali Farhadzadeh
{"title":"Hydromechanical factors influencing erosion and recession of compacted sandy bluffs under random waves actions","authors":"Tao Xiang , Mohammad Khosravi , Ali Khosravi , Henry Bokuniewicz , Ali Farhadzadeh","doi":"10.1016/j.enggeo.2025.107957","DOIUrl":null,"url":null,"abstract":"<div><div>The recession of a sandy bluff was investigated in a controlled laboratory wave flume, replicating the complex interactions between hydrodynamic forcing, sediment transport processes, and bluff slope stability. A comprehensive monitoring approach measured water levels, pore water pressures, moisture content, and detailed bathymetric-topographic data, providing a thorough understanding of the governing mechanisms and their interrelationships within the beach-bluff system. Bluff recession occurred through notch formation at the bluff toe, followed by a series of minor and major episodic bluff failures. Pore-water pressure variations within the bluff were closely linked to morphological changes on the beach and the bluff's instability. The final beach profile exhibited distinct characteristics: near the shoreline, it was steeper than the equilibrium beach profile due to the sediment supplied by bluff recession. Cross-spectral analysis between water level fluctuations and pore water pressure signals revealed a strong coupling between incident wave energy and pore water pressure responses within the beach-bluff system. The rapid rise in saturation, along with the formation and expansion of the notch, contributed to bluff instability and episodic failure events.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"348 ","pages":"Article 107957"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000535","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The recession of a sandy bluff was investigated in a controlled laboratory wave flume, replicating the complex interactions between hydrodynamic forcing, sediment transport processes, and bluff slope stability. A comprehensive monitoring approach measured water levels, pore water pressures, moisture content, and detailed bathymetric-topographic data, providing a thorough understanding of the governing mechanisms and their interrelationships within the beach-bluff system. Bluff recession occurred through notch formation at the bluff toe, followed by a series of minor and major episodic bluff failures. Pore-water pressure variations within the bluff were closely linked to morphological changes on the beach and the bluff's instability. The final beach profile exhibited distinct characteristics: near the shoreline, it was steeper than the equilibrium beach profile due to the sediment supplied by bluff recession. Cross-spectral analysis between water level fluctuations and pore water pressure signals revealed a strong coupling between incident wave energy and pore water pressure responses within the beach-bluff system. The rapid rise in saturation, along with the formation and expansion of the notch, contributed to bluff instability and episodic failure events.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.