Detection of C-reactive protein using single cluster analysis of gold nanoparticle aggregates using a dark-field microscope equipped with a smartphone†

IF 3.5 Q2 CHEMISTRY, ANALYTICAL Sensors & diagnostics Pub Date : 2024-12-23 DOI:10.1039/D4SD00329B
Nanami Fukuzumi, Takako Nakagawa, Gen Hirao, Atsushi Ogawa, Mizuo Maeda, Tsuyoshi Asahi and Tamotsu Zako
{"title":"Detection of C-reactive protein using single cluster analysis of gold nanoparticle aggregates using a dark-field microscope equipped with a smartphone†","authors":"Nanami Fukuzumi, Takako Nakagawa, Gen Hirao, Atsushi Ogawa, Mizuo Maeda, Tsuyoshi Asahi and Tamotsu Zako","doi":"10.1039/D4SD00329B","DOIUrl":null,"url":null,"abstract":"<p >Gold nanoparticles (AuNPs), which have been used as colorimetric biosensors, show strong light scattering, allowing individual AuNPs to be identified using a dark-field microscope (DFM). In this study, we developed a method of observing the target molecule-derived aggregation of AuNPs modified with DNA aptamers at the single-cluster level using the DFM. C-Reactive protein (CRP) is an important clinical biomarker of inflammatory and cardiovascular diseases, for which a simple, inexpensive, and sensitive detection method is needed. In this study, the CRP-mediated aggregate formation of CRP aptamer-modified AuNPs was evaluated with single-cluster analysis using the DFM, and the detection limit was 17 nM, which was sufficient as a diagnostic indicator for CRP. We also developed a portable DFM equipped with a smartphone and a stage adjustment system, which enables single-cluster observation of AuNPs, and showed that 50 nM of CRP could be detected, indicating that this approach is suitable for point-of-care diagnosis. With the selection of appropriate aptamers, this method can be applied for the detection of various molecules.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 2","pages":" 159-165"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00329b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d4sd00329b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoparticles (AuNPs), which have been used as colorimetric biosensors, show strong light scattering, allowing individual AuNPs to be identified using a dark-field microscope (DFM). In this study, we developed a method of observing the target molecule-derived aggregation of AuNPs modified with DNA aptamers at the single-cluster level using the DFM. C-Reactive protein (CRP) is an important clinical biomarker of inflammatory and cardiovascular diseases, for which a simple, inexpensive, and sensitive detection method is needed. In this study, the CRP-mediated aggregate formation of CRP aptamer-modified AuNPs was evaluated with single-cluster analysis using the DFM, and the detection limit was 17 nM, which was sufficient as a diagnostic indicator for CRP. We also developed a portable DFM equipped with a smartphone and a stage adjustment system, which enables single-cluster observation of AuNPs, and showed that 50 nM of CRP could be detected, indicating that this approach is suitable for point-of-care diagnosis. With the selection of appropriate aptamers, this method can be applied for the detection of various molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Back cover Back cover Construction of a self-assembled duplexed aptasensor for the simultaneous detection of haemoglobin and glycated haemoglobin† NHS-ester conjugated gold nanoparticles for spermine detection: a potential tool in meat spoilage monitoring† Rapid and automated interpretation of CRISPR-Cas13-based lateral flow assay test results using machine learning†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1