{"title":"Paraffin-based composites containing high density particles: lead and bismuth and its’ oxides as γ-ray shielding materials: an experimental study","authors":"Jolanta Sobczak, Krzysztof Cioch, Gaweł Żyła","doi":"10.1186/s11671-025-04203-z","DOIUrl":null,"url":null,"abstract":"<div><p>Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi<sub>2</sub>O<sub>3</sub>) particles and lead (II,IV) oxide particles (Pb<sub>3</sub>O<sub>4</sub>) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing <sup>60</sup>Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04203-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04203-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shielding nano- and microcomposites have emerged as a promising solution in the constantly growing requirements and expectations in the field of radiological protection. The majority of gamma and X-ray shielding nanocomposites are based on polymers due to lightweight, low cost and flexibility as the inviting features in comparison to traditional lead shields. Taking this into consideration, the following study proposes gamma-ray shielding composites characterized by their susceptibility to shape change using the heat and manual pressure. The paraffin-based composites were filled with pure lead and bismuth particles (Bi and Pb, in one mass fraction: 10 wt%) as well as it’s oxides: bismuth (III) oxide (Bi2O3) particles and lead (II,IV) oxide particles (Pb3O4) (manufactured in two concentrations: 10 and 50 wt%). Based on experimental studies utilizing 60Co the half-value layers were calculated approximately 13–14 cm and ca. 9 cm for 10 wt% and 50 wt% filler concentration, respectively. The relatively quick and straightforward manufacturing process, utilizing two commercially available components, allows for the production of a gamma-ray shielding composite featuring a variety of shape choices, facilitating its use in areas where acquiring complex shields remains problematic, or the desired shape development requires repetition of the production process, changes in some of its stages and modification of the composition.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.