{"title":"Fabrication of lipid-modified drug nanocrystals loaded injectable hydrogel for breast cancer therapy","authors":"Manish Kumar, Abhishek Jha, Pooja Goswami, Ritika Srivastava, Manjit Manjit, Kanchan Bharti, Biplob Koch, Brahmeshwar Mishra","doi":"10.1186/s11671-025-04195-w","DOIUrl":null,"url":null,"abstract":"<div><p>The current study includes the design of soluplus stabilized, lipid-coated, and fucoidan-oleylamine conjugate modified paclitaxel nanocrystals. The nanocrystals (Lipid-NCs) were about 100 nm, homogeneous, stable and showed improved drug release compared to pure PTX. The nanocrystals were subsequently loaded in an in situ gel-forming hydrogel for the intratumoral injection. The resulting hydrogel exhibited a sol-form at the lower temperature of 2–8 °C while converted to a gel-form at the body temperature. The injectable hydrogel had a reasonable viscosity, an acceptable pH, good syringeability, and a quick sol–gel transition. The hydrogel demonstrated high payload potential, homogeneous distribution, and controlled long-term drug release. In vivo studies revealed the higher efficacy of Lipid-NCs hydrogel in tumor inhibition while avoiding systemic toxicity, compared to pure PTX-loaded hydrogel and intravenously administered PTX. In conclusion, nanocrystal-loaded hydrogel is a promising localized drug delivery system for breast cancer therapy.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04195-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04195-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study includes the design of soluplus stabilized, lipid-coated, and fucoidan-oleylamine conjugate modified paclitaxel nanocrystals. The nanocrystals (Lipid-NCs) were about 100 nm, homogeneous, stable and showed improved drug release compared to pure PTX. The nanocrystals were subsequently loaded in an in situ gel-forming hydrogel for the intratumoral injection. The resulting hydrogel exhibited a sol-form at the lower temperature of 2–8 °C while converted to a gel-form at the body temperature. The injectable hydrogel had a reasonable viscosity, an acceptable pH, good syringeability, and a quick sol–gel transition. The hydrogel demonstrated high payload potential, homogeneous distribution, and controlled long-term drug release. In vivo studies revealed the higher efficacy of Lipid-NCs hydrogel in tumor inhibition while avoiding systemic toxicity, compared to pure PTX-loaded hydrogel and intravenously administered PTX. In conclusion, nanocrystal-loaded hydrogel is a promising localized drug delivery system for breast cancer therapy.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.