Zhihui Liu, Si Wang, Kemin Wang, Jiajun Tong, Zijun Zhao, Xiaofeng Liu, Yiwei Liu
{"title":"Digital microfluidic-based fluorescence methods for the automated determination of copper ions in wine","authors":"Zhihui Liu, Si Wang, Kemin Wang, Jiajun Tong, Zijun Zhao, Xiaofeng Liu, Yiwei Liu","doi":"10.1007/s00604-025-07019-x","DOIUrl":null,"url":null,"abstract":"<div><p>A novel approach is introduced by combining digital microfluidic technology with click chemistry for automated sample handling on a chip, enabling accurate detection of copper ions in wine. By developing a copper-catalyzed click chemistry reaction using azide coumarin and hexanol, we have introduced a method that offers advantages such as simplicity, minimal by-products, and enhanced resistance to interference compared with other fluorescent methods. Furthermore, optimization of the digital microfluidic chip parameters enabled processing of sub-microliter samples with a droplet coefficient of variation of 0.6%, outperforming the ~ 4.0% error typically seen with conventional pipetting methods. This method processes samples as small as 870 nL, providing cost efficiency, automated detection, reduced errors, and a detection limit of 15.4 μM (0.98 mg/L), meeting testing requirements. Our approach effectively detects copper ion contamination in wine with a recovery of 98.7 to 106%, offering robust technical support for food safety regulations.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07019-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach is introduced by combining digital microfluidic technology with click chemistry for automated sample handling on a chip, enabling accurate detection of copper ions in wine. By developing a copper-catalyzed click chemistry reaction using azide coumarin and hexanol, we have introduced a method that offers advantages such as simplicity, minimal by-products, and enhanced resistance to interference compared with other fluorescent methods. Furthermore, optimization of the digital microfluidic chip parameters enabled processing of sub-microliter samples with a droplet coefficient of variation of 0.6%, outperforming the ~ 4.0% error typically seen with conventional pipetting methods. This method processes samples as small as 870 nL, providing cost efficiency, automated detection, reduced errors, and a detection limit of 15.4 μM (0.98 mg/L), meeting testing requirements. Our approach effectively detects copper ion contamination in wine with a recovery of 98.7 to 106%, offering robust technical support for food safety regulations.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.