{"title":"Review on the DFT computation of bulk heterojunction and dye-sensitized organic solar cell properties","authors":"Nathália M. P. Rosa, Itamar Borges Jr.","doi":"10.1007/s00894-025-06304-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Organic solar cells (OSCs) represent a promising renewable energy technology due to their flexibility, low production cost, and environmental sustainability. To advance OSC efficiency and stability, density functional theory (DFT) has emerged as a powerful computational tool, enabling the prediction and optimization of critical properties at the molecular and device levels. This review highlights the key properties of bulk heterojunction solar (BHJ) solar cells and dye-sensitized solar cells (DSSCs) that can be accurately computed using DFT, including <i>electronic structure properties</i> (HOMO–LUMO energy levels, bandgap energies, and exciton binding energies, which influence charge separation and transport); <i>optical properties</i> (absorption spectra and light-harvesting efficiency, essential for maximizing photon capture); <i>charge transport properties</i> (reorganization energies, electron, and hole mobilities, and charge transfer rates that govern carrier dynamics within devices); <i>interfacial properties</i> (energy alignment at donor–acceptor interfaces, contributing to efficient charge separation and minimizing recombination); and <i>chemical reactivity descriptors</i> (ionization potential, electron affinity, chemical hardness, and electrophilicity, which facilitate material screening for OSC applications). We also show how to compute OSCs’ power conversion efficiency (PCE) from DFT.</p><h3>Methods</h3><p>The review also discusses the importance of selecting appropriate exchange–correlation functionals and basis sets to ensure the accuracy of DFT predictions. By providing reliable computational insights, DFT accelerates the rational design of OSC materials, guides experimental efforts, and reduces resource demands. This work underscores DFT’s pivotal role in optimizing OSC performance and fostering the development of next-generation photovoltaic technologies.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06304-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Organic solar cells (OSCs) represent a promising renewable energy technology due to their flexibility, low production cost, and environmental sustainability. To advance OSC efficiency and stability, density functional theory (DFT) has emerged as a powerful computational tool, enabling the prediction and optimization of critical properties at the molecular and device levels. This review highlights the key properties of bulk heterojunction solar (BHJ) solar cells and dye-sensitized solar cells (DSSCs) that can be accurately computed using DFT, including electronic structure properties (HOMO–LUMO energy levels, bandgap energies, and exciton binding energies, which influence charge separation and transport); optical properties (absorption spectra and light-harvesting efficiency, essential for maximizing photon capture); charge transport properties (reorganization energies, electron, and hole mobilities, and charge transfer rates that govern carrier dynamics within devices); interfacial properties (energy alignment at donor–acceptor interfaces, contributing to efficient charge separation and minimizing recombination); and chemical reactivity descriptors (ionization potential, electron affinity, chemical hardness, and electrophilicity, which facilitate material screening for OSC applications). We also show how to compute OSCs’ power conversion efficiency (PCE) from DFT.
Methods
The review also discusses the importance of selecting appropriate exchange–correlation functionals and basis sets to ensure the accuracy of DFT predictions. By providing reliable computational insights, DFT accelerates the rational design of OSC materials, guides experimental efforts, and reduces resource demands. This work underscores DFT’s pivotal role in optimizing OSC performance and fostering the development of next-generation photovoltaic technologies.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.