Diurnal Variation in Melatonin-Mediated Cardiac Protection via Per2 Expression in Heart

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Pineal Research Pub Date : 2025-02-12 DOI:10.1111/jpi.70036
Ronghao Luo, Zebin Yang, Wanshi Liang, Yifei Chen, Yinhong Jie, Yang Zhang, Le Li
{"title":"Diurnal Variation in Melatonin-Mediated Cardiac Protection via Per2 Expression in Heart","authors":"Ronghao Luo,&nbsp;Zebin Yang,&nbsp;Wanshi Liang,&nbsp;Yifei Chen,&nbsp;Yinhong Jie,&nbsp;Yang Zhang,&nbsp;Le Li","doi":"10.1111/jpi.70036","DOIUrl":null,"url":null,"abstract":"<p>Myocardial ischemia/reperfusion (MIR) injury, a primary cause of mortality in acute myocardial infarction, exhibits diurnal variation associated with disruptions in diurnal rhythm. Melatonin (MLT), a potent antioxidant known for its cardioprotective properties, also demonstrates diurnal rhythmicity. This study aimed to investigate the time-dependent cardioprotective effects of MLT in MIR and to clarify the role of the circadian gene Per2 in mediating these effects. Using in vivo (mice) and in vitro (H9c2 cardiomyocytes) models of MIR, we administered MLT at two distinct diurnal time points: ZT1 and ZT13. We evaluated infarct size, cardiac function, apoptosis, and the expression levels of Per2 and other circadian genes. Pretreatment with MLT at ZT13 significantly reduced infarct size and enhanced cardiac function compared to ZT1 administration. This time-dependent cardioprotective effect correlated with the diurnal expression pattern of Per2, which was notably augmented by dark phase administration of MLT without phase alteration. Crucially, Per2 knockdown in both models abrogated the cardioprotective effects of MLT. Our findings underscore that MLT confers superior cardioprotection against MIR injury when administered at dark phase, aligning with the circadian variation of Per2 expression. These effects reveal the therapeutic potential of targeting the MLT-Per2 axis in chronotherapy to mitigate MIR injury.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpi.70036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70036","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial ischemia/reperfusion (MIR) injury, a primary cause of mortality in acute myocardial infarction, exhibits diurnal variation associated with disruptions in diurnal rhythm. Melatonin (MLT), a potent antioxidant known for its cardioprotective properties, also demonstrates diurnal rhythmicity. This study aimed to investigate the time-dependent cardioprotective effects of MLT in MIR and to clarify the role of the circadian gene Per2 in mediating these effects. Using in vivo (mice) and in vitro (H9c2 cardiomyocytes) models of MIR, we administered MLT at two distinct diurnal time points: ZT1 and ZT13. We evaluated infarct size, cardiac function, apoptosis, and the expression levels of Per2 and other circadian genes. Pretreatment with MLT at ZT13 significantly reduced infarct size and enhanced cardiac function compared to ZT1 administration. This time-dependent cardioprotective effect correlated with the diurnal expression pattern of Per2, which was notably augmented by dark phase administration of MLT without phase alteration. Crucially, Per2 knockdown in both models abrogated the cardioprotective effects of MLT. Our findings underscore that MLT confers superior cardioprotection against MIR injury when administered at dark phase, aligning with the circadian variation of Per2 expression. These effects reveal the therapeutic potential of targeting the MLT-Per2 axis in chronotherapy to mitigate MIR injury.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
期刊最新文献
Diurnal Variation in Melatonin-Mediated Cardiac Protection via Per2 Expression in Heart Multi-Omics Analysis Reveals That AhNHL Contributes to Melatonin-Mediated Cadmium Tolerance in Peanut Plants Meditation Linked to Enhanced MRI Signal Intensity in the Pineal Gland and Reduced Predicted Brain Age Issue Information Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1