Alexander Kudzin, Satoshi Takayama, Atsushi Ishigame
{"title":"Energy Management Systems (EMS) for a Decentralized Grid: A Review and Analysis of the Generation and Control Methods Impact on EMS Type and Topology","authors":"Alexander Kudzin, Satoshi Takayama, Atsushi Ishigame","doi":"10.1049/rpg2.70008","DOIUrl":null,"url":null,"abstract":"<p>Grid decarbonization is transitioning the generation method's (GM) topology towards a distributed energy resource (DER)-centric decentralized topology. However, the control method (CM) and energy management system (EMS) are yet to decentralize, resulting in topological mismatch-related issues that pose significant operational challenges. Due to the advantages of topological synergy, CM research is moving towards decentralized topologies. However, the EMS lacks a clear development path and defined target parameters. This study investigates the interdependencies between GM, CM, and EMS topologies, determining their relationship to forecast the future trajectory of EMS research and to determine robust evaluation parameters for EMS proposals. Topological analysis revealed a strong influence of one sector on another, placing significant pressure to decentralize the EMS. Utilizing these findings, a detailed evaluation of the proposed cloud-edge, cluster, and blockchain-based EMS proposals against the established parameters revealed that blockchain-based architectures best aligned with the incoming decentralized GM and CM's limitations, requirements, and advantages, offering superior security, resilience, adaptability, and scalability. Furthermore, blockchain technology has largely overcome the regulatory barriers and technical challenges, such as communication overheads, making blockchain-based EMS the most effective and efficient choice for a next-gen EMS.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Grid decarbonization is transitioning the generation method's (GM) topology towards a distributed energy resource (DER)-centric decentralized topology. However, the control method (CM) and energy management system (EMS) are yet to decentralize, resulting in topological mismatch-related issues that pose significant operational challenges. Due to the advantages of topological synergy, CM research is moving towards decentralized topologies. However, the EMS lacks a clear development path and defined target parameters. This study investigates the interdependencies between GM, CM, and EMS topologies, determining their relationship to forecast the future trajectory of EMS research and to determine robust evaluation parameters for EMS proposals. Topological analysis revealed a strong influence of one sector on another, placing significant pressure to decentralize the EMS. Utilizing these findings, a detailed evaluation of the proposed cloud-edge, cluster, and blockchain-based EMS proposals against the established parameters revealed that blockchain-based architectures best aligned with the incoming decentralized GM and CM's limitations, requirements, and advantages, offering superior security, resilience, adaptability, and scalability. Furthermore, blockchain technology has largely overcome the regulatory barriers and technical challenges, such as communication overheads, making blockchain-based EMS the most effective and efficient choice for a next-gen EMS.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf