Transforming Growth Factor-β Modulates Cancer Stem Cell Traits on CD44 Subpopulations in Hepatocellular Carcinoma

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of cellular biochemistry Pub Date : 2025-02-12 DOI:10.1002/jcb.70003
Mario Alejandro Aguilar-Chaparro, Sonia Andrea Rivera-Pineda, Hury Viridiana Hernández-Galdámez, Emmanuel Ríos-Castro, Olga Lilia Garibay-Cerdenares, Carolina Piña-Vázquez, Saúl Villa-Treviño
{"title":"Transforming Growth Factor-β Modulates Cancer Stem Cell Traits on CD44 Subpopulations in Hepatocellular Carcinoma","authors":"Mario Alejandro Aguilar-Chaparro,&nbsp;Sonia Andrea Rivera-Pineda,&nbsp;Hury Viridiana Hernández-Galdámez,&nbsp;Emmanuel Ríos-Castro,&nbsp;Olga Lilia Garibay-Cerdenares,&nbsp;Carolina Piña-Vázquez,&nbsp;Saúl Villa-Treviño","doi":"10.1002/jcb.70003","DOIUrl":null,"url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a formidable malignancy, with growing interest in identifying cancer stem cells (CSCs) as potential therapeutic targets. CD44 isoforms have emerged as promising CSC markers in HCC, often associated with epithelial-mesenchymal transition (EMT) induced by transforming growth factor-beta (TGF-β). However, the intricate relationship between CSC traits, CD44 isoforms, and TGF-β effects on CD44 subpopulations in HCC remains unclear. This study aimed to clarify how TGF-β influences proteomic changes and CSC traits in subpopulations expressing standard CD44 isoform (CD44std) and CD44 variant 9 (CD44v9). Treating SNU-423 cells with TGF-β lead to notable morphological changes, resembling a spindle-like phenotype, along with reductions in CD44v9+ subpopulations and differential CD44std expression. Proteomic analysis highlighted significant alterations in signaling pathways, particularly the mitogen-activated protein kinase (MAPK) pathway. Validation experiments demonstrated upregulation in CD44std cells and downregulation in CD44v9 cells post-TGF-β treatment. Furthermore, TGF-β exerted regulatory influence over Sox2 and Nanog expression, resulting in increased colony and spheroid formation in CD44std cells but decreased capabilities in CD44v9 cells. TGF-β also enhanced the migratory and invasive properties of both subpopulations through EMT, alongside increased adhesive abilities in CD44v9 cells. These findings illuminate the dynamic interplay between TGF-β and CD44std/CD44v9 subpopulations, emphasizing the role of MAPK signaling and modulation of CSC traits. This research contributes to understanding the dynamic interplay between CD44 isoforms and TGF-β in HCC.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.70003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is a formidable malignancy, with growing interest in identifying cancer stem cells (CSCs) as potential therapeutic targets. CD44 isoforms have emerged as promising CSC markers in HCC, often associated with epithelial-mesenchymal transition (EMT) induced by transforming growth factor-beta (TGF-β). However, the intricate relationship between CSC traits, CD44 isoforms, and TGF-β effects on CD44 subpopulations in HCC remains unclear. This study aimed to clarify how TGF-β influences proteomic changes and CSC traits in subpopulations expressing standard CD44 isoform (CD44std) and CD44 variant 9 (CD44v9). Treating SNU-423 cells with TGF-β lead to notable morphological changes, resembling a spindle-like phenotype, along with reductions in CD44v9+ subpopulations and differential CD44std expression. Proteomic analysis highlighted significant alterations in signaling pathways, particularly the mitogen-activated protein kinase (MAPK) pathway. Validation experiments demonstrated upregulation in CD44std cells and downregulation in CD44v9 cells post-TGF-β treatment. Furthermore, TGF-β exerted regulatory influence over Sox2 and Nanog expression, resulting in increased colony and spheroid formation in CD44std cells but decreased capabilities in CD44v9 cells. TGF-β also enhanced the migratory and invasive properties of both subpopulations through EMT, alongside increased adhesive abilities in CD44v9 cells. These findings illuminate the dynamic interplay between TGF-β and CD44std/CD44v9 subpopulations, emphasizing the role of MAPK signaling and modulation of CSC traits. This research contributes to understanding the dynamic interplay between CD44 isoforms and TGF-β in HCC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转化生长因子-β调节肝细胞癌 CD44 亚群的癌症干细胞特征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
期刊最新文献
Transforming Growth Factor-β Modulates Cancer Stem Cell Traits on CD44 Subpopulations in Hepatocellular Carcinoma Issue Information Hypoxic Secretome and Exosomes Derived From Human Glioblastoma Cells (U87MG) Promote Protumorigenic Phenotype of Microglia in Vitro Proteasomal Dysfunction in Cancer: Mechanistic Pathways and Targeted Therapies RETRACTION: Kaempferol Increases Apoptosis in Human Acute Promyelocytic Leukemia Cells and Inhibits Multidrug Resistance Genes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1