Mario Alejandro Aguilar-Chaparro, Sonia Andrea Rivera-Pineda, Hury Viridiana Hernández-Galdámez, Emmanuel Ríos-Castro, Olga Lilia Garibay-Cerdenares, Carolina Piña-Vázquez, Saúl Villa-Treviño
{"title":"Transforming Growth Factor-β Modulates Cancer Stem Cell Traits on CD44 Subpopulations in Hepatocellular Carcinoma","authors":"Mario Alejandro Aguilar-Chaparro, Sonia Andrea Rivera-Pineda, Hury Viridiana Hernández-Galdámez, Emmanuel Ríos-Castro, Olga Lilia Garibay-Cerdenares, Carolina Piña-Vázquez, Saúl Villa-Treviño","doi":"10.1002/jcb.70003","DOIUrl":null,"url":null,"abstract":"<p>Hepatocellular carcinoma (HCC) is a formidable malignancy, with growing interest in identifying cancer stem cells (CSCs) as potential therapeutic targets. CD44 isoforms have emerged as promising CSC markers in HCC, often associated with epithelial-mesenchymal transition (EMT) induced by transforming growth factor-beta (TGF-β). However, the intricate relationship between CSC traits, CD44 isoforms, and TGF-β effects on CD44 subpopulations in HCC remains unclear. This study aimed to clarify how TGF-β influences proteomic changes and CSC traits in subpopulations expressing standard CD44 isoform (CD44std) and CD44 variant 9 (CD44v9). Treating SNU-423 cells with TGF-β lead to notable morphological changes, resembling a spindle-like phenotype, along with reductions in CD44v9+ subpopulations and differential CD44std expression. Proteomic analysis highlighted significant alterations in signaling pathways, particularly the mitogen-activated protein kinase (MAPK) pathway. Validation experiments demonstrated upregulation in CD44std cells and downregulation in CD44v9 cells post-TGF-β treatment. Furthermore, TGF-β exerted regulatory influence over Sox2 and Nanog expression, resulting in increased colony and spheroid formation in CD44std cells but decreased capabilities in CD44v9 cells. TGF-β also enhanced the migratory and invasive properties of both subpopulations through EMT, alongside increased adhesive abilities in CD44v9 cells. These findings illuminate the dynamic interplay between TGF-β and CD44std/CD44v9 subpopulations, emphasizing the role of MAPK signaling and modulation of CSC traits. This research contributes to understanding the dynamic interplay between CD44 isoforms and TGF-β in HCC.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcb.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.70003","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a formidable malignancy, with growing interest in identifying cancer stem cells (CSCs) as potential therapeutic targets. CD44 isoforms have emerged as promising CSC markers in HCC, often associated with epithelial-mesenchymal transition (EMT) induced by transforming growth factor-beta (TGF-β). However, the intricate relationship between CSC traits, CD44 isoforms, and TGF-β effects on CD44 subpopulations in HCC remains unclear. This study aimed to clarify how TGF-β influences proteomic changes and CSC traits in subpopulations expressing standard CD44 isoform (CD44std) and CD44 variant 9 (CD44v9). Treating SNU-423 cells with TGF-β lead to notable morphological changes, resembling a spindle-like phenotype, along with reductions in CD44v9+ subpopulations and differential CD44std expression. Proteomic analysis highlighted significant alterations in signaling pathways, particularly the mitogen-activated protein kinase (MAPK) pathway. Validation experiments demonstrated upregulation in CD44std cells and downregulation in CD44v9 cells post-TGF-β treatment. Furthermore, TGF-β exerted regulatory influence over Sox2 and Nanog expression, resulting in increased colony and spheroid formation in CD44std cells but decreased capabilities in CD44v9 cells. TGF-β also enhanced the migratory and invasive properties of both subpopulations through EMT, alongside increased adhesive abilities in CD44v9 cells. These findings illuminate the dynamic interplay between TGF-β and CD44std/CD44v9 subpopulations, emphasizing the role of MAPK signaling and modulation of CSC traits. This research contributes to understanding the dynamic interplay between CD44 isoforms and TGF-β in HCC.
期刊介绍:
The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.