Observation of Electric Field Enhancement at Ion Composition Boundary at Mars and Its Relation to Oxygen Acceleration

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2025-02-12 DOI:10.1029/2024GL113584
Sergey D. Shuvalov, Laila Andersson, Kathleen Gwen Hanley, Jasper S. Halekas, David L. Mitchell, Jared R. Espley
{"title":"Observation of Electric Field Enhancement at Ion Composition Boundary at Mars and Its Relation to Oxygen Acceleration","authors":"Sergey D. Shuvalov,&nbsp;Laila Andersson,&nbsp;Kathleen Gwen Hanley,&nbsp;Jasper S. Halekas,&nbsp;David L. Mitchell,&nbsp;Jared R. Espley","doi":"10.1029/2024GL113584","DOIUrl":null,"url":null,"abstract":"<p>Direct electric field measurements during certain ionosphere-magnetosheath transitions on the dayside of Mars reveal a presence of localized (<span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n </mrow>\n <annotation> ${&lt; } $</annotation>\n </semantics></math>20 km thickness along vertical direction) strong (<span></span><math>\n <semantics>\n <mrow>\n <mo>&gt;</mo>\n </mrow>\n <annotation> ${ &gt;} $</annotation>\n </semantics></math>40 mV/m) electric field located at the solar wind stagnation point. This electric field is nearly collocated with the ion composition boundary where ionospheric oxygen ions are observed to be accelerated up to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>1 keV, forming a layer of higher temperature plasma around the stagnation point. Simulations demonstrate that the observed localized electric field enhancement can create this hotter plasma layer population on either side of the boundary. This plasma layer can have an impact on the solar wind coupling with the planet and forms a reservoir for heavy ion escape.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113584","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113584","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct electric field measurements during certain ionosphere-magnetosheath transitions on the dayside of Mars reveal a presence of localized ( < ${< } $ 20 km thickness along vertical direction) strong ( > ${ >} $ 40 mV/m) electric field located at the solar wind stagnation point. This electric field is nearly collocated with the ion composition boundary where ionospheric oxygen ions are observed to be accelerated up to ${\sim} $ 1 keV, forming a layer of higher temperature plasma around the stagnation point. Simulations demonstrate that the observed localized electric field enhancement can create this hotter plasma layer population on either side of the boundary. This plasma layer can have an impact on the solar wind coupling with the planet and forms a reservoir for heavy ion escape.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火星离子成分边界的电场增强观测及其与氧加速的关系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Radiation-Belt Dropouts: Relationship With Geomagnetic Storms and MeV Precipitation The May 2024 Flood Disaster in Southern Brazil: Causes, Impacts, and SWOT-Based Volume Estimation Water/Methane Two-Phase Flow in the SiO2 Nanoslit Can Be Well Described via the Deformed Water Layer Model: A Molecular Simulation Study Assessment of the Performance of SWOT for Observing the Static Ocean Topography Monsoon-Frontal Interactions Drive Cyclone Biparjoy's Wake Recovery in the Arabian Sea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1