VARP binds SNX27 to promote endosomal supercomplex formation on membranes
IF 11.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESScience AdvancesPub Date : 2025-02-12
Mintu Chandra, Amy K. Kendall, Marijn G. J. Ford, Lauren P. Jackson
{"title":"VARP binds SNX27 to promote endosomal supercomplex formation on membranes","authors":"Mintu Chandra, Amy K. Kendall, Marijn G. J. Ford, Lauren P. Jackson","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Endosomes are vital cellular hubs for sorting protein cargoes. Retromer (VPS26/VPS35/VPS29) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but assembly mechanisms of metazoan SNX/Retromer complexes remain elusive. We combine biochemical and biophysical approaches with AlphaFold modeling to identify a previously unidentified direct interaction between SNX27 and VARP. A full biochemical reconstitution system using purified proteins systematically tests how and when coats are recruited to membranes to generate tubules. We demonstrate and measure how specific combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes, remodel membranes containing physiological cargo and phospholipids. SNX27, alone and with Retromer, remodels membranes with PI(3)P and PDZbm cargo. ESCPE-1 deforms membranes with bis-phosphoinositides and CI-MPR cargo but surprisingly does not recruit Retromer. VARP co-immunoprecipitates all coat components in cells and is required to reconstitute a proposed endosomal “supercomplex” (SNX27, ESCPE-1, and Retromer) in vitro. These data suggest VARP regulates metazoan endosomal coat assembly to promote cargo sorting out of endosomes.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 7","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adr9340","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adr9340","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Endosomes are vital cellular hubs for sorting protein cargoes. Retromer (VPS26/VPS35/VPS29) binds multiple sorting nexin (SNX) proteins on endosomal membranes, but assembly mechanisms of metazoan SNX/Retromer complexes remain elusive. We combine biochemical and biophysical approaches with AlphaFold modeling to identify a previously unidentified direct interaction between SNX27 and VARP. A full biochemical reconstitution system using purified proteins systematically tests how and when coats are recruited to membranes to generate tubules. We demonstrate and measure how specific combinations of Retromer with SNX27, ESCPE-1 (SNX2/SNX6), or both complexes, remodel membranes containing physiological cargo and phospholipids. SNX27, alone and with Retromer, remodels membranes with PI(3)P and PDZbm cargo. ESCPE-1 deforms membranes with bis-phosphoinositides and CI-MPR cargo but surprisingly does not recruit Retromer. VARP co-immunoprecipitates all coat components in cells and is required to reconstitute a proposed endosomal “supercomplex” (SNX27, ESCPE-1, and Retromer) in vitro. These data suggest VARP regulates metazoan endosomal coat assembly to promote cargo sorting out of endosomes.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.