Investigating the Therapeutic Ability of Novel Antimicrobial Peptide Dendropsophin 1 and Its Analogues through Membrane Disruption and Monomeric Pore Formation.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-02-12 DOI:10.1021/acs.jpcb.4c07758
Fahmida Rahman, Sujit Halder, Shamo Rahman, Md Lokman Hossen
{"title":"Investigating the Therapeutic Ability of Novel Antimicrobial Peptide Dendropsophin 1 and Its Analogues through Membrane Disruption and Monomeric Pore Formation.","authors":"Fahmida Rahman, Sujit Halder, Shamo Rahman, Md Lokman Hossen","doi":"10.1021/acs.jpcb.4c07758","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are an alternative source of antibiotics that fight worldwide antibiotic-resistant catastrophes. Dendropsophin 1 (Dc1) is a recently invented novel AMP with 17 amino acid residues obtained from the screen secretion of a frog named <i>Dendropsophus columbianus</i>. Dc1 has two slightly mutated analogues, namely, Dc1.1 and Dc1.2, with improved cationicity and mean amphipathic moment to enhance the selective toxicity against microorganisms. Experimental results indicate that Dc1 and Dc1.1 have similar antimicrobial activity against Gram-negative bacteria <i>Escherichia coli</i> and Gram-positive bacteria <i>Staphylococcus aureus</i>, whereas the synthesized peptide Dc1.2 has shown antimicrobial activity against a wide range of microorganisms. However, the molecular level details of the peptide-membrane interaction and the corresponding changes in the peptide structure remain elusive. In this study, we investigate the bacterial membrane disruption capability of these AMPs by running a total of 14.2 μs long molecular dynamics (MD) simulations. Our findings suggest that all three peptides affect the upper layer of the membrane with different degrees of disruption. After penetration, Dc1 and Dc1.2 retain stable α-helices in the core region, indicating the potential to disrupt the second layer. However, secondary structure analysis shows that Dc1.2 attains extended helical regions on the C-terminus, suggesting it as the superior candidate among the analogues to have the potential of stable pore formation, leading to bacterial cell death. To speed up our study, we adopt a one-transmembrane configuration of Dc1, Dc1.1, and Dc1.2 and find toroidal pores with subsequent water leakage for Dc1.2.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c07758","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are an alternative source of antibiotics that fight worldwide antibiotic-resistant catastrophes. Dendropsophin 1 (Dc1) is a recently invented novel AMP with 17 amino acid residues obtained from the screen secretion of a frog named Dendropsophus columbianus. Dc1 has two slightly mutated analogues, namely, Dc1.1 and Dc1.2, with improved cationicity and mean amphipathic moment to enhance the selective toxicity against microorganisms. Experimental results indicate that Dc1 and Dc1.1 have similar antimicrobial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus, whereas the synthesized peptide Dc1.2 has shown antimicrobial activity against a wide range of microorganisms. However, the molecular level details of the peptide-membrane interaction and the corresponding changes in the peptide structure remain elusive. In this study, we investigate the bacterial membrane disruption capability of these AMPs by running a total of 14.2 μs long molecular dynamics (MD) simulations. Our findings suggest that all three peptides affect the upper layer of the membrane with different degrees of disruption. After penetration, Dc1 and Dc1.2 retain stable α-helices in the core region, indicating the potential to disrupt the second layer. However, secondary structure analysis shows that Dc1.2 attains extended helical regions on the C-terminus, suggesting it as the superior candidate among the analogues to have the potential of stable pore formation, leading to bacterial cell death. To speed up our study, we adopt a one-transmembrane configuration of Dc1, Dc1.1, and Dc1.2 and find toroidal pores with subsequent water leakage for Dc1.2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Issue Publication Information Issue Editorial Masthead How Rigid Are Anthranilamide Molecular Electrets? An Implicit Solvation Model for Binding Free Energy Estimation in Nonaqueous Solution. In Silico Discovery of SARS-CoV-2 Main Protease Inhibitors Using Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1