Guillem Simeon, Antonio Mirarchi, Raul P Pelaez, Raimondas Galvelis, Gianni De Fabritiis
{"title":"Broadening the Scope of Neural Network Potentials through Direct Inclusion of Additional Molecular Attributes.","authors":"Guillem Simeon, Antonio Mirarchi, Raul P Pelaez, Raimondas Galvelis, Gianni De Fabritiis","doi":"10.1021/acs.jctc.4c01625","DOIUrl":null,"url":null,"abstract":"<p><p>Most state-of-the-art neural network potentials do not account for molecular attributes other than atomic numbers and positions, which limits its range of applicability by design. In this work, we demonstrate the importance of including additional electronic attributes in neural network potential representations with a minimal architectural change to TensorNet, a state-of-the-art equivariant model based on Cartesian rank-2 tensor representations. By performing experiments on both custom-made and public benchmarking data sets, we show that this modification resolves input degeneracy issues stemming from the use of atomic numbers and positions alone, while enhancing the model's predictive accuracy across diverse chemical systems with different charge or spin states. This is accomplished without tailored strategies or the inclusion of physics-based energy terms, while maintaining efficiency and accuracy. These findings should furthermore encourage researchers to train and use models incorporating these additional representations.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01625","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Most state-of-the-art neural network potentials do not account for molecular attributes other than atomic numbers and positions, which limits its range of applicability by design. In this work, we demonstrate the importance of including additional electronic attributes in neural network potential representations with a minimal architectural change to TensorNet, a state-of-the-art equivariant model based on Cartesian rank-2 tensor representations. By performing experiments on both custom-made and public benchmarking data sets, we show that this modification resolves input degeneracy issues stemming from the use of atomic numbers and positions alone, while enhancing the model's predictive accuracy across diverse chemical systems with different charge or spin states. This is accomplished without tailored strategies or the inclusion of physics-based energy terms, while maintaining efficiency and accuracy. These findings should furthermore encourage researchers to train and use models incorporating these additional representations.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.