Maodong Li, Yupeng Huang, Yijie Xia, Dechin Chen, Cheng Fan, Lijiang Yang, Yi Qin Gao, Yi Isaac Yang
{"title":"Effective Nucleation Size for Ice Crystallization.","authors":"Maodong Li, Yupeng Huang, Yijie Xia, Dechin Chen, Cheng Fan, Lijiang Yang, Yi Qin Gao, Yi Isaac Yang","doi":"10.1021/acs.jctc.4c01588","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the apparent simplicity of water molecules, the kinetics of ice nucleation under natural conditions can be surprisingly intricate. Previous studies have yielded critical nucleation sizes that vary widely due to differences in experimental and computational approaches. In our investigation, we employed all-atom molecular dynamics simulations to explore spontaneously grown and ideal ice nuclei, revealing significant disparities in their kinetics. Notably, nucleation defects challenge the applicability of the classical nucleation theory (CNT) to spontaneously grown ice nuclei. To address this, we propose a generalized nucleation theory that effectively describes the kinetics of ice crystal nucleation across diverse conditions. The kinetics of ice nuclei, as characterized by the \"corrected\" critical nucleus size, follow a linear law akin to that assumed by CNT. This generalized nucleation theory also provides insights for studying the kinetics of other crystalline materials.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01588","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the apparent simplicity of water molecules, the kinetics of ice nucleation under natural conditions can be surprisingly intricate. Previous studies have yielded critical nucleation sizes that vary widely due to differences in experimental and computational approaches. In our investigation, we employed all-atom molecular dynamics simulations to explore spontaneously grown and ideal ice nuclei, revealing significant disparities in their kinetics. Notably, nucleation defects challenge the applicability of the classical nucleation theory (CNT) to spontaneously grown ice nuclei. To address this, we propose a generalized nucleation theory that effectively describes the kinetics of ice crystal nucleation across diverse conditions. The kinetics of ice nuclei, as characterized by the "corrected" critical nucleus size, follow a linear law akin to that assumed by CNT. This generalized nucleation theory also provides insights for studying the kinetics of other crystalline materials.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.