Xiaolin Hou, Lin Zhai, Laiying Fu, Junna Lu, Peilin Guo, Yu Zhang, Diwei Zheng, Guanghui Ma
{"title":"Advances in Engineered Phages for Disease Treatment.","authors":"Xiaolin Hou, Lin Zhai, Laiying Fu, Junna Lu, Peilin Guo, Yu Zhang, Diwei Zheng, Guanghui Ma","doi":"10.1002/smtd.202401611","DOIUrl":null,"url":null,"abstract":"<p><p>Phage therapy presents a promising solution for combating multidrug-resistant (MDR) bacterial infections and other bacteria-related diseases, attributed to their innate ability to target and lyse bacteria. Recent clinical successes, particularly in treating MDR-related respiratory and post-surgical infections, validated the therapeutic potential of phage therapy. However, the complex microenvironment within the human body poses significant challenges to phage activity and efficacy in vivo. To overcome these barriers, recent advances in phage engineering have aimed to enhance targeting accuracy, improve stability and survivability, and explore synergistic combinations with other therapeutic modalities. This review provides a comprehensive overview of phage therapy, emphasizing the application of engineered phages in antibacterial therapy, tumor therapy, and vaccine development. Furthermore, the review highlights the current challenges and future trends for advancing phage therapy toward broader clinical applications.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401611"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401611","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phage therapy presents a promising solution for combating multidrug-resistant (MDR) bacterial infections and other bacteria-related diseases, attributed to their innate ability to target and lyse bacteria. Recent clinical successes, particularly in treating MDR-related respiratory and post-surgical infections, validated the therapeutic potential of phage therapy. However, the complex microenvironment within the human body poses significant challenges to phage activity and efficacy in vivo. To overcome these barriers, recent advances in phage engineering have aimed to enhance targeting accuracy, improve stability and survivability, and explore synergistic combinations with other therapeutic modalities. This review provides a comprehensive overview of phage therapy, emphasizing the application of engineered phages in antibacterial therapy, tumor therapy, and vaccine development. Furthermore, the review highlights the current challenges and future trends for advancing phage therapy toward broader clinical applications.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.