Boyi Guo, Wodan Ling, Sang Ho Kwon, Pratibha Panwar, Shila Ghazanfar, Keri Martinowich, Stephanie C Hicks
{"title":"Integrating Spatially-Resolved Transcriptomics Data Across Tissues and Individuals: Challenges and Opportunities.","authors":"Boyi Guo, Wodan Ling, Sang Ho Kwon, Pratibha Panwar, Shila Ghazanfar, Keri Martinowich, Stephanie C Hicks","doi":"10.1002/smtd.202401194","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. The lowering cost of SRT data generation presents an unprecedented opportunity to create large-scale spatial atlases and enable population-level investigation, integrating SRT data across multiple tissues, individuals, species, or phenotypes. Here, unique challenges are described in the SRT data integration, where the analytic impact of varying spatial and biological resolutions is characterized and explored. A succinct review of spatially-aware integration methods and computational strategies is provided. Exciting opportunities to advance computational algorithms amenable to atlas-scale datasets along with standardized preprocessing methods, leading to improved sensitivity and reproducibility in the future are further highlighted.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401194"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401194","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. The lowering cost of SRT data generation presents an unprecedented opportunity to create large-scale spatial atlases and enable population-level investigation, integrating SRT data across multiple tissues, individuals, species, or phenotypes. Here, unique challenges are described in the SRT data integration, where the analytic impact of varying spatial and biological resolutions is characterized and explored. A succinct review of spatially-aware integration methods and computational strategies is provided. Exciting opportunities to advance computational algorithms amenable to atlas-scale datasets along with standardized preprocessing methods, leading to improved sensitivity and reproducibility in the future are further highlighted.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.