Species-specific blood-brain barrier permeability in amphibians.

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2025-02-11 DOI:10.1186/s12915-025-02145-7
Sophie Antesberger, Beate Stiening, Michael Forsthofer, Alberto Joven Araus, Elif Eroglu, Jonas Huber, Martin Heß, Hans Straka, Rosario Sanchez-Gonzalez
{"title":"Species-specific blood-brain barrier permeability in amphibians.","authors":"Sophie Antesberger, Beate Stiening, Michael Forsthofer, Alberto Joven Araus, Elif Eroglu, Jonas Huber, Martin Heß, Hans Straka, Rosario Sanchez-Gonzalez","doi":"10.1186/s12915-025-02145-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The blood-brain barrier (BBB) is a semipermeable interface that prevents the non-selective transport into the central nervous system. It controls the delivery of macromolecules fueling the brain metabolism and the immunological surveillance. The BBB permeability is locally regulated depending on the physiological requirements, maintaining the tissue homeostasis and influencing pathological conditions. Given its relevance in vertebrate CNS, it is surprising that little is known about the BBB in Amphibians, some of which are capable of adult CNS regeneration.</p><p><strong>Results: </strong>The BBB size threshold of the anuran Xenopus laevis (African clawed toad), as well as two urodele species, Ambystoma mexicanum (axolotl) and Pleurodeles waltl (Iberian ribbed newt), was evaluated under physiological conditions through the use of synthetic tracers. We detected important differences between the analyzed species. Xenopus exhibited a BBB with characteristics more similar to those observed in mammals, whereas the BBB of axolotl was found to be permeable to the 1 kDa tracer. The permeability of the 1 kDa tracer measured in Pleurodeles showed values in between axolotl and Xenopus vesseks. We confirmed that these differences are species-specific and not related to metamorphosis. In line with these results, the tight junction protein Claudin-5 was absent in axolotl, intermediate in Pleurodeles and showed full-coverage in Xenopus vessels. Interestingly, electron microscopy analysis and the retention pattern of the larger tracers (3 and 70 kDa) demonstrated that axolotl endothelial cells exhibit higher rates of macropinocytosis, a non-regulated type of transcellular transport.</p><p><strong>Conclusions: </strong>Our study demonstrated that, under physiological conditions, the blood-brain barrier exhibited species-specific variations, including permeability threshold, blood vessel coverage, and macropinocytosis rate. Future studies are needed to test whether the higher permeability observed in salamanders could have metabolic and immunological consequences contributing to their remarkable regenerative capacity.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"43"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02145-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The blood-brain barrier (BBB) is a semipermeable interface that prevents the non-selective transport into the central nervous system. It controls the delivery of macromolecules fueling the brain metabolism and the immunological surveillance. The BBB permeability is locally regulated depending on the physiological requirements, maintaining the tissue homeostasis and influencing pathological conditions. Given its relevance in vertebrate CNS, it is surprising that little is known about the BBB in Amphibians, some of which are capable of adult CNS regeneration.

Results: The BBB size threshold of the anuran Xenopus laevis (African clawed toad), as well as two urodele species, Ambystoma mexicanum (axolotl) and Pleurodeles waltl (Iberian ribbed newt), was evaluated under physiological conditions through the use of synthetic tracers. We detected important differences between the analyzed species. Xenopus exhibited a BBB with characteristics more similar to those observed in mammals, whereas the BBB of axolotl was found to be permeable to the 1 kDa tracer. The permeability of the 1 kDa tracer measured in Pleurodeles showed values in between axolotl and Xenopus vesseks. We confirmed that these differences are species-specific and not related to metamorphosis. In line with these results, the tight junction protein Claudin-5 was absent in axolotl, intermediate in Pleurodeles and showed full-coverage in Xenopus vessels. Interestingly, electron microscopy analysis and the retention pattern of the larger tracers (3 and 70 kDa) demonstrated that axolotl endothelial cells exhibit higher rates of macropinocytosis, a non-regulated type of transcellular transport.

Conclusions: Our study demonstrated that, under physiological conditions, the blood-brain barrier exhibited species-specific variations, including permeability threshold, blood vessel coverage, and macropinocytosis rate. Future studies are needed to test whether the higher permeability observed in salamanders could have metabolic and immunological consequences contributing to their remarkable regenerative capacity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两栖动物血脑屏障渗透性的物种特异性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
SpaCcLink: exploring downstream signaling regulations with graph attention network for systematic inference of spatial cell-cell communication. Delivering miR-23b-3p by small extracellular vesicles to promote cell senescence and aberrant lipid metabolism. Species-specific blood-brain barrier permeability in amphibians. Wolbachia enhances the survival of Drosophila infected with fungal pathogens. Unravelling the hidden side of laundry: malodour, microbiome and pathogenome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1