Gfa1 (glutamine fructose-6-phosphate aminotransferase) is essential for Aspergillus fumigatus growth and virulence.

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2025-03-13 DOI:10.1186/s12915-025-02184-0
Qijian Qin, Pingzhen Wei, Sayed Usman, Chukwuemeka Samson Ahamefule, Cheng Jin, Bin Wang, Kaizhou Yan, Daan M F van Aalten, Wenxia Fang
{"title":"Gfa1 (glutamine fructose-6-phosphate aminotransferase) is essential for Aspergillus fumigatus growth and virulence.","authors":"Qijian Qin, Pingzhen Wei, Sayed Usman, Chukwuemeka Samson Ahamefule, Cheng Jin, Bin Wang, Kaizhou Yan, Daan M F van Aalten, Wenxia Fang","doi":"10.1186/s12915-025-02184-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Aspergillus fumigatus, the primary etiological agent of invasive aspergillosis, causes over 1.8 million deaths annually. Targeting cell wall biosynthetic pathways offers a promising antifungal strategy. Gfa1, a rate-limiting enzyme in UDP-GlcNAc synthesis, plays a pivotal role in the hexosamine biosynthetic pathway (HBP).</p><p><strong>Results: </strong>Deletion of gfa1 (Δgfa1) results in auxotrophy for glucosamine (GlcN) or N-acetylglucosamine (GlcNAc). Under full recovery (FR) conditions, where minimal medium is supplemented with 5 mM GlcN as the sole carbon source, the Δgfa1 mutant shows growth comparable to the wild-type (WT). However, when supplemented with 5 mM GlcN and 55 mM glucose, growth is partially repressed, likely due to carbon catabolite repression, a condition termed partial repression (PR). Under PR conditions, Δgfa1 exhibits compromised growth, reduced conidiation, defective germination, impaired cell wall integrity, and increased sensitivity to endoplasmic reticulum (ER) stress and high temperatures. Additionally, Δgfa1 demonstrates disruptions in protein homeostasis and iron metabolism. Transcriptomic analysis of the mutant under PR conditions reveals significant alterations in carbohydrate and amino acid metabolism, unfolded protein response (UPR) processes, and iron assimilation. Importantly, Gfa1 is essential for A. fumigatus virulence, as demonstrated in Caenorhabditis elegans and Galleria mellonella infection models.</p><p><strong>Conclusions: </strong>These findings underscore the critical role of Gfa1 in fungal pathogenicity and suggest its potential as a therapeutic target for combating A. fumigatus infections.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"80"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02184-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aspergillus fumigatus, the primary etiological agent of invasive aspergillosis, causes over 1.8 million deaths annually. Targeting cell wall biosynthetic pathways offers a promising antifungal strategy. Gfa1, a rate-limiting enzyme in UDP-GlcNAc synthesis, plays a pivotal role in the hexosamine biosynthetic pathway (HBP).

Results: Deletion of gfa1 (Δgfa1) results in auxotrophy for glucosamine (GlcN) or N-acetylglucosamine (GlcNAc). Under full recovery (FR) conditions, where minimal medium is supplemented with 5 mM GlcN as the sole carbon source, the Δgfa1 mutant shows growth comparable to the wild-type (WT). However, when supplemented with 5 mM GlcN and 55 mM glucose, growth is partially repressed, likely due to carbon catabolite repression, a condition termed partial repression (PR). Under PR conditions, Δgfa1 exhibits compromised growth, reduced conidiation, defective germination, impaired cell wall integrity, and increased sensitivity to endoplasmic reticulum (ER) stress and high temperatures. Additionally, Δgfa1 demonstrates disruptions in protein homeostasis and iron metabolism. Transcriptomic analysis of the mutant under PR conditions reveals significant alterations in carbohydrate and amino acid metabolism, unfolded protein response (UPR) processes, and iron assimilation. Importantly, Gfa1 is essential for A. fumigatus virulence, as demonstrated in Caenorhabditis elegans and Galleria mellonella infection models.

Conclusions: These findings underscore the critical role of Gfa1 in fungal pathogenicity and suggest its potential as a therapeutic target for combating A. fumigatus infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Gfa1 (glutamine fructose-6-phosphate aminotransferase) is essential for Aspergillus fumigatus growth and virulence. Rare but specific: 5-bp composite motifs define SMAD binding in BMP signaling. A dynamic transcriptional cell atlas of testes development after birth in Hu sheep. Bradykinin's carbamylation as a mechanistic link to impaired wound healing in patients with kidney dysfunction. Correction: Phylogenomics of angiosperms based on mitochondrial genes: insights into deep node relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1