Deep learning-assisted identification and localization of ductal carcinoma from bulk tissue in-silico models generated through polarized Monte Carlo simulations.
{"title":"Deep learning-assisted identification and localization of ductal carcinoma from bulk tissue in-silico models generated through polarized Monte Carlo simulations.","authors":"Janaki Ramkumar, N Sujatha","doi":"10.1088/2057-1976/adb495","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant progress in diagnosis and treatment, breast cancer remains a formidable health challenge, emphasizing the continuous need for research. This simulation study uses polarized Monte Carlo approach to identify and locate breast cancer. The tissue model Mueller matrix derived from polarized Monte Carlo simulations provides enhanced contrast for better comprehension of tissue structures. This study explicitly targets tumour regions found at the tissue surface, a possible scenario in thick tissue sections obtained after surgical removal of breast tissue lumps. We use a convolutional neural network for the identification and localization of tumours. Nine distinct spatial positions, defined relative to the point of illumination, allow the identification of the tumour even if it is outside the directly illuminated area. A system incorporating deep learning techniques automates processes and enables real-time diagnosis. This research paper aims to showcase the concurrent detection of the tumour's existence and position by utilizing a Convolutional Neural Network (CNN) implemented on depolarized index images derived from polarized Monte Carlo simulations. The classification accuracy achieved by the CNN model stands at 96%, showcasing its optimal performance. The model is also tested with images obtained from in-vitro tissue models, which yielded 100% classification accuracy on a selected subset of spatial positions.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/adb495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant progress in diagnosis and treatment, breast cancer remains a formidable health challenge, emphasizing the continuous need for research. This simulation study uses polarized Monte Carlo approach to identify and locate breast cancer. The tissue model Mueller matrix derived from polarized Monte Carlo simulations provides enhanced contrast for better comprehension of tissue structures. This study explicitly targets tumour regions found at the tissue surface, a possible scenario in thick tissue sections obtained after surgical removal of breast tissue lumps. We use a convolutional neural network for the identification and localization of tumours. Nine distinct spatial positions, defined relative to the point of illumination, allow the identification of the tumour even if it is outside the directly illuminated area. A system incorporating deep learning techniques automates processes and enables real-time diagnosis. This research paper aims to showcase the concurrent detection of the tumour's existence and position by utilizing a Convolutional Neural Network (CNN) implemented on depolarized index images derived from polarized Monte Carlo simulations. The classification accuracy achieved by the CNN model stands at 96%, showcasing its optimal performance. The model is also tested with images obtained from in-vitro tissue models, which yielded 100% classification accuracy on a selected subset of spatial positions.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.