Effects of Non-linear Interaction Between Oxygen and Lactate on Solid Tumor Growth Under Cyclic Hypoxia.

IF 2 4区 数学 Q2 BIOLOGY Bulletin of Mathematical Biology Pub Date : 2025-02-11 DOI:10.1007/s11538-025-01420-6
Gopinath Sadhu, D C Dalal
{"title":"Effects of Non-linear Interaction Between Oxygen and Lactate on Solid Tumor Growth Under Cyclic Hypoxia.","authors":"Gopinath Sadhu, D C Dalal","doi":"10.1007/s11538-025-01420-6","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen is a crucial element for cellular respiration. Based on oxygen concentration, tumor regions can be categorized as normoxic, hypoxic, and necrotic. Hypoxic tumor cells switch their metabolism from aerobic glycolysis to anaerobic glycolysis. As a result, lactate is produced in hypoxic regions and is used as an alternative metabolic fuel by normoxic tumor cells. The consumption of lactate and oxygen by tumor cells does not follow a linear pattern. Scientific studies suggest that oxygen consumption and lactate production are non-linear phenomena. In this study, we propose a two-dimensional mathematical model to investigate lactate dynamics in avascular tumors with various initial shapes, such as circular, elliptical, and petal, and to explore its growth patterns in the context of non-linear interactions between oxygen and lactate. In certain human tumors, particularly in kidney, skin, and liver, multiple tumors may emerge within a tissue domain simultaneously. We also examine how the growth patterns of multiple tumors evolve within a shared domain. Cyclic hypoxia, commonly observed in solid tumors, results from oxygen fluctuations over time at the tumor site. Additionally, we analyze lactate dynamics and tumor growth patterns in environments with cyclic hypoxia. In order to simulate the proposed model, we use finite element based COMSOL Multiphysics 6.0 interface. The simulated results show excellent agreement with experimental data. Our findings reveal that the initial tumor shape significantly influences the lactate distribution and the tumor's internal structure. Furthermore, the simulations indicate that multiple tumors eventually merge into a single tumor. We also observe that cyclic hypoxia with short periodicity increases tumor volume.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 3","pages":"41"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01420-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen is a crucial element for cellular respiration. Based on oxygen concentration, tumor regions can be categorized as normoxic, hypoxic, and necrotic. Hypoxic tumor cells switch their metabolism from aerobic glycolysis to anaerobic glycolysis. As a result, lactate is produced in hypoxic regions and is used as an alternative metabolic fuel by normoxic tumor cells. The consumption of lactate and oxygen by tumor cells does not follow a linear pattern. Scientific studies suggest that oxygen consumption and lactate production are non-linear phenomena. In this study, we propose a two-dimensional mathematical model to investigate lactate dynamics in avascular tumors with various initial shapes, such as circular, elliptical, and petal, and to explore its growth patterns in the context of non-linear interactions between oxygen and lactate. In certain human tumors, particularly in kidney, skin, and liver, multiple tumors may emerge within a tissue domain simultaneously. We also examine how the growth patterns of multiple tumors evolve within a shared domain. Cyclic hypoxia, commonly observed in solid tumors, results from oxygen fluctuations over time at the tumor site. Additionally, we analyze lactate dynamics and tumor growth patterns in environments with cyclic hypoxia. In order to simulate the proposed model, we use finite element based COMSOL Multiphysics 6.0 interface. The simulated results show excellent agreement with experimental data. Our findings reveal that the initial tumor shape significantly influences the lactate distribution and the tumor's internal structure. Furthermore, the simulations indicate that multiple tumors eventually merge into a single tumor. We also observe that cyclic hypoxia with short periodicity increases tumor volume.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
期刊最新文献
Epidemiological Dynamics in Populations Structured by Neighbourhoods and Households. An Asymptotic Analysis of Spike Self-Replication and Spike Nucleation of Reaction-Diffusion Patterns on Growing 1-D Domains. EAD Mechanisms in Hypertrophic Mouse Ventricular Myocytes: Insights from a Compartmentalized Mathematical Model. modelSSE: An R Package for Characterizing Infectious Disease Superspreading from Contact Tracing Data. Influence of Contact Lens Parameters on Tear Film Dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1