Sex-specific role of epigenetic modification of a leptin upstream enhancer in adipose tissue.

IF 4.8 2区 医学 Q1 GENETICS & HEREDITY Clinical Epigenetics Pub Date : 2025-02-11 DOI:10.1186/s13148-025-01830-2
Luise Müller, Rebecca Oelkrug, Jens Mittag, Anne Hoffmann, Adhideb Ghosh, Falko Noé, Christian Wolfrum, Esther Guiu Jurado, Nora Klöting, Arne Dietrich, Matthias Blüher, Peter Kovacs, Kerstin Krause, Maria Keller
{"title":"Sex-specific role of epigenetic modification of a leptin upstream enhancer in adipose tissue.","authors":"Luise Müller, Rebecca Oelkrug, Jens Mittag, Anne Hoffmann, Adhideb Ghosh, Falko Noé, Christian Wolfrum, Esther Guiu Jurado, Nora Klöting, Arne Dietrich, Matthias Blüher, Peter Kovacs, Kerstin Krause, Maria Keller","doi":"10.1186/s13148-025-01830-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Maternal hormonal status can have long-term effects on offspring metabolic health and is likely regulated via epigenetic mechanisms. We elucidated the effects of maternal thyroid hormones on the epigenetic regulation of leptin (Lep) transcription in adipose tissue (AT) and subsequently investigated the role of DNA methylation at a Lep upstream enhancer (UE) in adipocyte biology.</p><p><strong>Results: </strong>Pregnant mice treated with triiodothyronine (T3) produced offspring with reduced body weight, total fat mass, and gonadal white adipose tissue (gWAT) mass at 6 months of age (treatment: N = 8; control: N = 12). Compared with control offspring, exclusively female offspring of T3-treated mothers presented lower Lep mRNA levels and higher Lep UE methylation in gWAT. In murine preadipocytes, targeted demethylation of the Lep UE via a dCas9-SunTag-TET1 system reduced methylation by ~ 20%, but this effect was insufficient to alter Lep expression or lipid accumulation after differentiation. In human omental visceral AT (OVAT) samples from the Leipzig Obesity BioBank (LOBB, N = 52), LEP UE methylation was associated with body fat percentage, and mediation analysis indicated that leptin serum levels partially mediate this association exclusively in females.</p><p><strong>Conclusion: </strong>Findings from the animal model suggest that maternal thyroid hormones influence offspring gWAT Lep expression in a sex-specific manner, potentially through changes in Lep UE methylation. However, in vitro experiments indicate that Lep UE methylation alone is not sufficient to regulate Lep expression or adipocyte lipid accumulation. In humans with obesity, LEP UE methylation is associated with body fat percentage, with leptin serum levels potentially acting as a mediator exclusively in females.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"17 1","pages":"21"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-025-01830-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Maternal hormonal status can have long-term effects on offspring metabolic health and is likely regulated via epigenetic mechanisms. We elucidated the effects of maternal thyroid hormones on the epigenetic regulation of leptin (Lep) transcription in adipose tissue (AT) and subsequently investigated the role of DNA methylation at a Lep upstream enhancer (UE) in adipocyte biology.

Results: Pregnant mice treated with triiodothyronine (T3) produced offspring with reduced body weight, total fat mass, and gonadal white adipose tissue (gWAT) mass at 6 months of age (treatment: N = 8; control: N = 12). Compared with control offspring, exclusively female offspring of T3-treated mothers presented lower Lep mRNA levels and higher Lep UE methylation in gWAT. In murine preadipocytes, targeted demethylation of the Lep UE via a dCas9-SunTag-TET1 system reduced methylation by ~ 20%, but this effect was insufficient to alter Lep expression or lipid accumulation after differentiation. In human omental visceral AT (OVAT) samples from the Leipzig Obesity BioBank (LOBB, N = 52), LEP UE methylation was associated with body fat percentage, and mediation analysis indicated that leptin serum levels partially mediate this association exclusively in females.

Conclusion: Findings from the animal model suggest that maternal thyroid hormones influence offspring gWAT Lep expression in a sex-specific manner, potentially through changes in Lep UE methylation. However, in vitro experiments indicate that Lep UE methylation alone is not sufficient to regulate Lep expression or adipocyte lipid accumulation. In humans with obesity, LEP UE methylation is associated with body fat percentage, with leptin serum levels potentially acting as a mediator exclusively in females.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.30%
发文量
150
期刊介绍: Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.
期刊最新文献
HOXA9 methylation is not associated with survival in Brazilian patients with lung adenocarcinoma. Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation. Radiogenomic method combining DNA methylation profiles and magnetic resonance imaging radiomics predicts patient prognosis in skull base chordoma. DNA methylation-based telomere length is more strongly associated with long-term all-cause mortality than quantitative polymerase chain reaction-based telomere length among middle-aged and older hypertensive adults. Sex-specific role of epigenetic modification of a leptin upstream enhancer in adipose tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1