Henrietta Bolló, Cecília Carreiro, Ivaylo Borislavov Iotchev, Ferenc Gombos, Márta Gácsi, József Topál, Anna Kis
{"title":"The Effect of Targeted Memory Reactivation on Dogs' Visuospatial Memory.","authors":"Henrietta Bolló, Cecília Carreiro, Ivaylo Borislavov Iotchev, Ferenc Gombos, Márta Gácsi, József Topál, Anna Kis","doi":"10.1523/ENEURO.0304-20.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The role of sleep in memory consolidation is a widely discussed but still debated area of research. In light of the fact that memory consolidation during sleep is an evolutionary adaptive function, investigating the same phenomenon in nonhuman model species is highly relevant for its understanding. One such species, which has acquired human-analog sociocognitive skills through convergent evolution, is the domestic dog. Family dogs have surfaced as an outstanding animal model in sleep research, and their learning skills (in a social context) are subject to sleep-dependent memory consolidation. These results, however, are correlational, and the next challenge is to establish causality. In the present study, we aimed to adapt a TMR (targeted memory reactivation) paradigm in dogs and investigate its effect on sleep parameters. Dogs (<i>N</i> = 16) learned new commands associated with different locations and afterward took part in a sleep polysomnography recording when they were re-exposed to one of the previously learned commands. The results did not indicate a cueing benefit on choice performance. However, there was evidence for a decrease in choice latency after sleep, while the density (occurrence/minute) of fast sleep spindles was also notably higher during TMR recordings than adaptation recordings from the same animals and even compared with a larger reference sample from a previous work. Our study provides empirical evidence that TMR is feasible with family dogs, even during a daytime nap. Furthermore, the present study highlights several methodological and conceptual challenges for future research.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":"12 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0304-20.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The role of sleep in memory consolidation is a widely discussed but still debated area of research. In light of the fact that memory consolidation during sleep is an evolutionary adaptive function, investigating the same phenomenon in nonhuman model species is highly relevant for its understanding. One such species, which has acquired human-analog sociocognitive skills through convergent evolution, is the domestic dog. Family dogs have surfaced as an outstanding animal model in sleep research, and their learning skills (in a social context) are subject to sleep-dependent memory consolidation. These results, however, are correlational, and the next challenge is to establish causality. In the present study, we aimed to adapt a TMR (targeted memory reactivation) paradigm in dogs and investigate its effect on sleep parameters. Dogs (N = 16) learned new commands associated with different locations and afterward took part in a sleep polysomnography recording when they were re-exposed to one of the previously learned commands. The results did not indicate a cueing benefit on choice performance. However, there was evidence for a decrease in choice latency after sleep, while the density (occurrence/minute) of fast sleep spindles was also notably higher during TMR recordings than adaptation recordings from the same animals and even compared with a larger reference sample from a previous work. Our study provides empirical evidence that TMR is feasible with family dogs, even during a daytime nap. Furthermore, the present study highlights several methodological and conceptual challenges for future research.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.