Radiomics integration based on intratumoral and peritumoral computed tomography improves the diagnostic efficiency of invasiveness in patients with pure ground-glass nodules: a machine learning, cross-sectional, bicentric study.
{"title":"Radiomics integration based on intratumoral and peritumoral computed tomography improves the diagnostic efficiency of invasiveness in patients with pure ground-glass nodules: a machine learning, cross-sectional, bicentric study.","authors":"Ying Zeng, Jing Chen, Shanyue Lin, Haibo Liu, Yingjun Zhou, Xiao Zhou","doi":"10.1186/s13019-024-03289-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiomics has shown promise in the diagnosis and prognosis of lung cancer. Here, we investigated the performance of computed tomography-based radiomic features, extracted from gross tumor volume (GTV), peritumoral volume (PTV), and GTV + PTV (GPTV), for predicting the pathological invasiveness of pure ground-glass nodules present in lung adenocarcinoma.</p><p><strong>Methods: </strong>This was a retrospective, cross-sectional, bicentric study with data collected from January 1, 2018, to June 1, 2022. We divided the dataset into a training cohort (n = 88) from one center and an external validation cohort (n = 59) from another center. Radiomic signatures (rad-scores) were obtained after features were selected through correlation and least absolute shrinkage and selection operator analysis. Three machine learning models, a support vector machine model, a random forest model, and a generalized linear model, were then applied to build radiomic models.</p><p><strong>Results: </strong>Invasive adenocarcinoma had a higher rad-score (P<0.001) in the GTV and GPTV. The area under the curves (AUC) of GTV, PTV, and GPTV were 0.839, 0.809, and 0.855 in the training cohort and 0.755, 0.777, and 0.801 in the external validation cohort, respectively. The GPTV model had higher AUCs for predicting pathological invasiveness. The random forest model had the best validity and fit for the proposed machine learning approach, suggesting that it may be the most appropriate model.</p><p><strong>Conclusions: </strong>GPTV had the highest diagnostic efficiency for predicting pathological invasiveness in patients with pure ground-grass nodules, and the random forest model outperformed other predictive models.</p>","PeriodicalId":15201,"journal":{"name":"Journal of Cardiothoracic Surgery","volume":"20 1","pages":"122"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiothoracic Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13019-024-03289-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Radiomics has shown promise in the diagnosis and prognosis of lung cancer. Here, we investigated the performance of computed tomography-based radiomic features, extracted from gross tumor volume (GTV), peritumoral volume (PTV), and GTV + PTV (GPTV), for predicting the pathological invasiveness of pure ground-glass nodules present in lung adenocarcinoma.
Methods: This was a retrospective, cross-sectional, bicentric study with data collected from January 1, 2018, to June 1, 2022. We divided the dataset into a training cohort (n = 88) from one center and an external validation cohort (n = 59) from another center. Radiomic signatures (rad-scores) were obtained after features were selected through correlation and least absolute shrinkage and selection operator analysis. Three machine learning models, a support vector machine model, a random forest model, and a generalized linear model, were then applied to build radiomic models.
Results: Invasive adenocarcinoma had a higher rad-score (P<0.001) in the GTV and GPTV. The area under the curves (AUC) of GTV, PTV, and GPTV were 0.839, 0.809, and 0.855 in the training cohort and 0.755, 0.777, and 0.801 in the external validation cohort, respectively. The GPTV model had higher AUCs for predicting pathological invasiveness. The random forest model had the best validity and fit for the proposed machine learning approach, suggesting that it may be the most appropriate model.
Conclusions: GPTV had the highest diagnostic efficiency for predicting pathological invasiveness in patients with pure ground-grass nodules, and the random forest model outperformed other predictive models.
期刊介绍:
Journal of Cardiothoracic Surgery is an open access journal that encompasses all aspects of research in the field of Cardiology, and Cardiothoracic and Vascular Surgery. The journal publishes original scientific research documenting clinical and experimental advances in cardiac, vascular and thoracic surgery, and related fields.
Topics of interest include surgical techniques, survival rates, surgical complications and their outcomes; along with basic sciences, pediatric conditions, transplantations and clinical trials.
Journal of Cardiothoracic Surgery is of interest to cardiothoracic and vascular surgeons, cardiothoracic anaesthesiologists, cardiologists, chest physicians, and allied health professionals.