A Clinical Isolate of Human Parainfluenza Virus 3 (Fukushima/O695/2019) Contains a Mutation in the Serial Guanosines in the RNA Editing Site of the P Gene and Produces an Atypical Number of Nongenomic Guanosine Insertions During RNA Editing.
{"title":"A Clinical Isolate of Human Parainfluenza Virus 3 (Fukushima/O695/2019) Contains a Mutation in the Serial Guanosines in the RNA Editing Site of the P Gene and Produces an Atypical Number of Nongenomic Guanosine Insertions During RNA Editing.","authors":"Kazuya Shirato, Miyuki Kawase, Reiko Suwa, Masatoshi Kakizaki, Satoko Sugimoto, Yohei Kume, Mina Chishiki, Takashi Ono, Hisao Okabe, Sakurako Norito, Mitsuaki Hosoya, Makoto Ujike, Koichi Hashimoto","doi":"10.1111/1348-0421.13203","DOIUrl":null,"url":null,"abstract":"<p><p>Human parainfluenza virus 3 (HPIV3) contains a purine-rich RNA editing site, allowing multiple viral proteins to be produced from a single gene by the posttranscriptional addition of G nucleotides. The Fukushima/O695/2019 (O695) HPIV3 clinical isolate has a G-to-A substitution at the last position of five serial G residues in the RNA editing site. This study evaluates the effects of this substitution in the RNA editing site on the biological character of HPIV3. Our results show that O695 has slightly reduced viral replication compared with viruses with an intact RNA editing site. The number of G nucleotides inserted into the RNA editing site in HPIV3 isolates with an intact RNA editing site was 5 or fewer in most cases, giving a total of 10 serial G bases (5 + 5). In contrast, the number of G nucleotides inserted into the RNA editing site in O695 showed an atypical pattern, with six or fewer in most cases. This resulted in a total of 10 (4 + 6), suggesting the additional insertion of one more nongenomic G to the mRNA of the P gene of O695 compared with viruses carrying no mutations in the RNA editing site. Phylogenetic analysis reveals that mutations in the RNA editing site occur sporadically with various mutation patterns, suggesting that these mutations are routinely selected for during the life cycle of HPIV3.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13203","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human parainfluenza virus 3 (HPIV3) contains a purine-rich RNA editing site, allowing multiple viral proteins to be produced from a single gene by the posttranscriptional addition of G nucleotides. The Fukushima/O695/2019 (O695) HPIV3 clinical isolate has a G-to-A substitution at the last position of five serial G residues in the RNA editing site. This study evaluates the effects of this substitution in the RNA editing site on the biological character of HPIV3. Our results show that O695 has slightly reduced viral replication compared with viruses with an intact RNA editing site. The number of G nucleotides inserted into the RNA editing site in HPIV3 isolates with an intact RNA editing site was 5 or fewer in most cases, giving a total of 10 serial G bases (5 + 5). In contrast, the number of G nucleotides inserted into the RNA editing site in O695 showed an atypical pattern, with six or fewer in most cases. This resulted in a total of 10 (4 + 6), suggesting the additional insertion of one more nongenomic G to the mRNA of the P gene of O695 compared with viruses carrying no mutations in the RNA editing site. Phylogenetic analysis reveals that mutations in the RNA editing site occur sporadically with various mutation patterns, suggesting that these mutations are routinely selected for during the life cycle of HPIV3.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.