{"title":"Diversity of microtubule arrays in animal cells at a glance.","authors":"Emma J van Grinsven, Anna Akhmanova","doi":"10.1242/jcs.263476","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubules are cytoskeletal filaments important for various cellular processes such as intracellular transport, cell division, polarization and migration. Microtubule organization goes hand in hand with cellular function. Motile cells, such as immune cells or fibroblasts, contain microtubule asters attached to the centrosome and the Golgi complex, whereas in many other differentiated cells, microtubules form linear arrays or meshworks anchored at membrane-bound organelles or the cell cortex. Over the past decade, new developments in cell culture, genome editing and microscopy have greatly advanced our understanding of complex microtubule arrays. In this Cell Science at a Glance article and the accompanying poster, we review the diversity of microtubule arrays in interphase animal cells. We describe microtubule network geometries present in various differentiated cells, explore the variety in microtubule-organizing centers responsible for these geometries, and discuss examples of microtubule reorganization in response to functional changes and their interplay with cell motility and tissue development.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263476","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microtubules are cytoskeletal filaments important for various cellular processes such as intracellular transport, cell division, polarization and migration. Microtubule organization goes hand in hand with cellular function. Motile cells, such as immune cells or fibroblasts, contain microtubule asters attached to the centrosome and the Golgi complex, whereas in many other differentiated cells, microtubules form linear arrays or meshworks anchored at membrane-bound organelles or the cell cortex. Over the past decade, new developments in cell culture, genome editing and microscopy have greatly advanced our understanding of complex microtubule arrays. In this Cell Science at a Glance article and the accompanying poster, we review the diversity of microtubule arrays in interphase animal cells. We describe microtubule network geometries present in various differentiated cells, explore the variety in microtubule-organizing centers responsible for these geometries, and discuss examples of microtubule reorganization in response to functional changes and their interplay with cell motility and tissue development.