Luman Wang, Caitlin M A Simopoulos, Joeselle M Serrana, Zhibin Ning, Yutong Li, Boyan Sun, Jinhui Yuan, Daniel Figeys, Leyuan Li
{"title":"PhyloFunc: phylogeny-informed functional distance as a new ecological metric for metaproteomic data analysis.","authors":"Luman Wang, Caitlin M A Simopoulos, Joeselle M Serrana, Zhibin Ning, Yutong Li, Boyan Sun, Jinhui Yuan, Daniel Figeys, Leyuan Li","doi":"10.1186/s40168-024-02015-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Beta-diversity is a fundamental ecological metric for exploring dissimilarities between microbial communities. On the functional dimension, metaproteomics data can be used to quantify beta-diversity to understand how microbial community functional profiles vary under different environmental conditions. Conventional approaches to metaproteomic functional beta-diversity often treat protein functions as independent features, ignoring the evolutionary relationships among microbial taxa from which different proteins originate. A more informative functional distance metric that incorporates evolutionary relatedness is needed to better understand microbiome functional dissimilarities.</p><p><strong>Results: </strong>Here, we introduce PhyloFunc, a novel functional beta-diversity metric that incorporates microbiome phylogeny to inform on metaproteomic functional distance. Leveraging the phylogenetic framework of weighted UniFrac distance, PhyloFunc innovatively utilizes branch lengths to weigh between-sample functional distances for each taxon, rather than differences in taxonomic abundance as in weighted UniFrac. Proof of concept using a simulated toy dataset and a real dataset from mouse inoculated with a synthetic gut microbiome and fed different diets show that PhyloFunc successfully captured functional compensatory effects between phylogenetically related taxa. We further tested a third dataset of complex human gut microbiomes treated with five different drugs to compare PhyloFunc's performance with other traditional distance methods. PCoA and machine learning-based classification algorithms revealed higher sensitivity of PhyloFunc in microbiome responses to paracetamol. We provide PhyloFunc as an open-source Python package (available at https://pypi.org/project/phylofunc/ ), enabling efficient calculation of functional beta-diversity distances between a pair of samples or the generation of a distance matrix for all samples within a dataset.</p><p><strong>Conclusions: </strong>Unlike traditional approaches that consider metaproteomics features as independent and unrelated, PhyloFunc acknowledges the role of phylogenetic context in shaping the functional landscape in metaproteomes. In particular, we report that PhyloFunc accounts for the functional compensatory effect of taxonomically related species. Its effectiveness, ecological relevance, and enhanced sensitivity in distinguishing group variations are demonstrated through the specific applications presented in this study. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"50"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-02015-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Beta-diversity is a fundamental ecological metric for exploring dissimilarities between microbial communities. On the functional dimension, metaproteomics data can be used to quantify beta-diversity to understand how microbial community functional profiles vary under different environmental conditions. Conventional approaches to metaproteomic functional beta-diversity often treat protein functions as independent features, ignoring the evolutionary relationships among microbial taxa from which different proteins originate. A more informative functional distance metric that incorporates evolutionary relatedness is needed to better understand microbiome functional dissimilarities.
Results: Here, we introduce PhyloFunc, a novel functional beta-diversity metric that incorporates microbiome phylogeny to inform on metaproteomic functional distance. Leveraging the phylogenetic framework of weighted UniFrac distance, PhyloFunc innovatively utilizes branch lengths to weigh between-sample functional distances for each taxon, rather than differences in taxonomic abundance as in weighted UniFrac. Proof of concept using a simulated toy dataset and a real dataset from mouse inoculated with a synthetic gut microbiome and fed different diets show that PhyloFunc successfully captured functional compensatory effects between phylogenetically related taxa. We further tested a third dataset of complex human gut microbiomes treated with five different drugs to compare PhyloFunc's performance with other traditional distance methods. PCoA and machine learning-based classification algorithms revealed higher sensitivity of PhyloFunc in microbiome responses to paracetamol. We provide PhyloFunc as an open-source Python package (available at https://pypi.org/project/phylofunc/ ), enabling efficient calculation of functional beta-diversity distances between a pair of samples or the generation of a distance matrix for all samples within a dataset.
Conclusions: Unlike traditional approaches that consider metaproteomics features as independent and unrelated, PhyloFunc acknowledges the role of phylogenetic context in shaping the functional landscape in metaproteomes. In particular, we report that PhyloFunc accounts for the functional compensatory effect of taxonomically related species. Its effectiveness, ecological relevance, and enhanced sensitivity in distinguishing group variations are demonstrated through the specific applications presented in this study. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.