MFSD2A Overexpression Inhibits Hepatocellular Carcinoma Through TGF-β/Smad Signaling.

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Carcinogenesis Pub Date : 2025-03-01 Epub Date: 2025-01-06 DOI:10.1002/mc.23875
Chaowen Xiao, Xinyang Zhao, Zouxiao Hu, Guanbao Long
{"title":"MFSD2A Overexpression Inhibits Hepatocellular Carcinoma Through TGF-β/Smad Signaling.","authors":"Chaowen Xiao, Xinyang Zhao, Zouxiao Hu, Guanbao Long","doi":"10.1002/mc.23875","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a common primary malignancy of the liver and has a high mortality. Major facilitator superfamily domain containing 2 (MFSD2A) was previously demonstrated to inhibit tumor progression in several cancers. Here, we elucidated the association between MFSD2A expression and HCC progression and also investigated the underlying mechanism. The online tools were utilized to evaluate MFSD2A expression in HCC samples and predict the prognostic significance of MFSD2A in HCC patients. The biological role of MFSD2A in HCC cellular processes was examined by colony formation, wound healing, transwell, and western blotting. The in vivo role of MFSD2A in HCC was investigated in a xenograft tumor model. The miRNAs and RNA-binding proteins potentially targeting MFSD2A were identified using bioinformatics prediction tools. Luciferase reporter, RNA immunoprecipitation, actinomycin D, and immunofluorescence assays were performed to investigate the molecule mechanisms of MFSD2A. Transforming growth factor (TGF)-β1/Small mothers against decapentaplegic (Smad) signaling was detected using western blot analysis. We found that MFSD2A expression was significantly downregulated in HCC patients and cells and its downregulation predicted a poor prognosis. MFSD2A overexpression repressed HCC cell proliferation, migration, invasion, the epithelial-to-mesenchymal transition in vitro, as well as inhibited HCC tumor growth in vivo. MFSD2A was targeted by miR-3189-3p. High-density lipoprotein binding protein (HDLBP) inhibited MFSD2A expression by binding to and destabilizing MFSD2A mRNA. MFSD2A significantly suppressed activation of TGF-β/Smad signaling in HCC cells. Knockdown of MFSD2A abrogated the inhibitory effect of miR-3189-3p inhibitor on HCC cellular processes, and overexpression of MFSD2A reversed the tumor-promoting effect of HDLBP overexpression. Overall, MFSD2A exerts a tumor-inhibiting effect in HCC via suppression of TGF-β/Smad signaling, suggesting that MFSD2A may be a promising target for HCC therapy.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":"64 3","pages":"597-611"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23875","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is a common primary malignancy of the liver and has a high mortality. Major facilitator superfamily domain containing 2 (MFSD2A) was previously demonstrated to inhibit tumor progression in several cancers. Here, we elucidated the association between MFSD2A expression and HCC progression and also investigated the underlying mechanism. The online tools were utilized to evaluate MFSD2A expression in HCC samples and predict the prognostic significance of MFSD2A in HCC patients. The biological role of MFSD2A in HCC cellular processes was examined by colony formation, wound healing, transwell, and western blotting. The in vivo role of MFSD2A in HCC was investigated in a xenograft tumor model. The miRNAs and RNA-binding proteins potentially targeting MFSD2A were identified using bioinformatics prediction tools. Luciferase reporter, RNA immunoprecipitation, actinomycin D, and immunofluorescence assays were performed to investigate the molecule mechanisms of MFSD2A. Transforming growth factor (TGF)-β1/Small mothers against decapentaplegic (Smad) signaling was detected using western blot analysis. We found that MFSD2A expression was significantly downregulated in HCC patients and cells and its downregulation predicted a poor prognosis. MFSD2A overexpression repressed HCC cell proliferation, migration, invasion, the epithelial-to-mesenchymal transition in vitro, as well as inhibited HCC tumor growth in vivo. MFSD2A was targeted by miR-3189-3p. High-density lipoprotein binding protein (HDLBP) inhibited MFSD2A expression by binding to and destabilizing MFSD2A mRNA. MFSD2A significantly suppressed activation of TGF-β/Smad signaling in HCC cells. Knockdown of MFSD2A abrogated the inhibitory effect of miR-3189-3p inhibitor on HCC cellular processes, and overexpression of MFSD2A reversed the tumor-promoting effect of HDLBP overexpression. Overall, MFSD2A exerts a tumor-inhibiting effect in HCC via suppression of TGF-β/Smad signaling, suggesting that MFSD2A may be a promising target for HCC therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
期刊最新文献
Potential Crosstalk Between ANXA1+ Epithelial Cells and FABP4+ TAM Cells of Ferroptosis-Related Molecular Clusters Promotes an Immunosuppressive Microenvironment in Non-Small Cell Lung Cancer. Integrative Bioinformatics Analysis and Experimental Study of NLRP12 Reveal Its Prognostic Value and Potential Functions in Ovarian Cancer. RNA Methyltransferase NSUN5 Promotes Esophageal Cancer via 5-Methylcytosine Modification of METTL1. FOXN3 Downregulation in Colorectal Cancer Enhances Tumor Cell Stemness by Promoting EP300-Mediated Epigenetic Upregulation of SOX12. Epigenetic Suppression of miR-137 Induces RNF4 Expression, Facilitating Wnt Signaling in Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1