Slow cortical dynamics generate context processing and novelty detection.

IF 14.7 1区 医学 Q1 NEUROSCIENCES Neuron Pub Date : 2025-03-19 Epub Date: 2025-02-10 DOI:10.1016/j.neuron.2025.01.011
Yuriy Shymkiv, Jordan P Hamm, Sean Escola, Rafael Yuste
{"title":"Slow cortical dynamics generate context processing and novelty detection.","authors":"Yuriy Shymkiv, Jordan P Hamm, Sean Escola, Rafael Yuste","doi":"10.1016/j.neuron.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>The cortex amplifies responses to novel stimuli while suppressing redundant ones. Novelty detection is necessary to efficiently process sensory information and build predictive models of the environment, and it is also altered in schizophrenia. To investigate the circuit mechanisms underlying novelty detection, we used an auditory \"oddball\" paradigm and two-photon calcium imaging to measure responses to simple and complex stimuli across mouse auditory cortex. Stimulus statistics and complexity generated specific responses across auditory areas. Neuronal ensembles reliably encoded auditory features and temporal context. Interestingly, stimulus-evoked population responses were particularly long lasting, reflecting stimulus history and affecting future responses. These slow cortical dynamics encoded stimulus temporal context and generated stronger responses to novel stimuli. Recurrent neural network models trained on the oddball task also exhibited slow network dynamics and recapitulated the biological data. We conclude that the slow dynamics of recurrent cortical networks underlie processing and novelty detection.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"847-857.e8"},"PeriodicalIF":14.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.01.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cortex amplifies responses to novel stimuli while suppressing redundant ones. Novelty detection is necessary to efficiently process sensory information and build predictive models of the environment, and it is also altered in schizophrenia. To investigate the circuit mechanisms underlying novelty detection, we used an auditory "oddball" paradigm and two-photon calcium imaging to measure responses to simple and complex stimuli across mouse auditory cortex. Stimulus statistics and complexity generated specific responses across auditory areas. Neuronal ensembles reliably encoded auditory features and temporal context. Interestingly, stimulus-evoked population responses were particularly long lasting, reflecting stimulus history and affecting future responses. These slow cortical dynamics encoded stimulus temporal context and generated stronger responses to novel stimuli. Recurrent neural network models trained on the oddball task also exhibited slow network dynamics and recapitulated the biological data. We conclude that the slow dynamics of recurrent cortical networks underlie processing and novelty detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
期刊最新文献
Closed-loop modulation of remote hippocampal representations with neurofeedback. Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition. Parental origin of transgene modulates amyloid-β plaque burden in the 5xFAD mouse model of Alzheimer's disease. Amygdalo-cortical dialogue underlies memory enhancement by emotional association. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1