Wenrui Zhao, Haimin Zhang, Lin Li, Jianping Zhang, Lisheng Chu
{"title":"Spinosin enhances non-rapid eye movement sleep and alters c-Fos expression in sleep-wake regulatory brain regions in mice.","authors":"Wenrui Zhao, Haimin Zhang, Lin Li, Jianping Zhang, Lisheng Chu","doi":"10.1007/s11325-025-03272-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Spinosin, a key flavonoids component found in Semen Zizhiphi spinosae, is known to enhance pentobarbital-induced sleep, which is primarily assessed with the loss-of-righting reflex (LORR). This research focused on investigating the impact of spinosin on sleep regulation in typical murine models.</p><p><strong>Methods: </strong>We used electroencephalogram (EEG) and electromyogram (EMG) recordings to evaluate the effects of spinosin (10, 20, 40 mg/kg, i.p.) on sleep-wake state. Immunohistochemical techniques were employed to investigate the c-Fos expression in various sleep-wake brain regions following the injection of spinosin.</p><p><strong>Results: </strong>In the initial three-hour period following administration, spinosin administered at a dose of 40 mg/kg exhibited a notable augmentation in the duration of non-rapid eye movement (NREM) sleep, with a 2.04-fold increase (P < 0.0001), accompanied by a reduction in wakefulness by approximately 42.84% (P < 0.0001) compared to the vehicle group. Immunohistochemical analysis revealed an enhancement in c-Fos expression within the accumbens nucleus (Acb) when treated with spinosin at 40 mg/kg. In contrast, a notable reduction in c-Fos expression was detected across various brain regions, including the paraventricular thalamic nucleus (PV), lateral hypothalamic area (LHA), ventrolateral periaqueductal gray (VLPAG), dorsal raphe nucleus (DR), and lateral parabrachial nucleus (LPB) (P < 0.05). In addition, the treatment resulted in an increase in c-Fos expression within gamma-aminobutyric acid (GABAergic) neurons in the Acb, while simultaneously decreasing c-Fos expression in orexin neurons within the LHA.</p><p><strong>Conclusions: </strong>The results indicate that spinosin (40 mg/kg, i.p.) enhances NREM sleep in mice. Moreover, heightened activity of GABAergic neurons in the Acb and reduced activity of orexin neurons in the LHA may be the pathway through which spinosin promotes sleep.</p>","PeriodicalId":21862,"journal":{"name":"Sleep and Breathing","volume":"29 1","pages":"101"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep and Breathing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11325-025-03272-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Spinosin, a key flavonoids component found in Semen Zizhiphi spinosae, is known to enhance pentobarbital-induced sleep, which is primarily assessed with the loss-of-righting reflex (LORR). This research focused on investigating the impact of spinosin on sleep regulation in typical murine models.
Methods: We used electroencephalogram (EEG) and electromyogram (EMG) recordings to evaluate the effects of spinosin (10, 20, 40 mg/kg, i.p.) on sleep-wake state. Immunohistochemical techniques were employed to investigate the c-Fos expression in various sleep-wake brain regions following the injection of spinosin.
Results: In the initial three-hour period following administration, spinosin administered at a dose of 40 mg/kg exhibited a notable augmentation in the duration of non-rapid eye movement (NREM) sleep, with a 2.04-fold increase (P < 0.0001), accompanied by a reduction in wakefulness by approximately 42.84% (P < 0.0001) compared to the vehicle group. Immunohistochemical analysis revealed an enhancement in c-Fos expression within the accumbens nucleus (Acb) when treated with spinosin at 40 mg/kg. In contrast, a notable reduction in c-Fos expression was detected across various brain regions, including the paraventricular thalamic nucleus (PV), lateral hypothalamic area (LHA), ventrolateral periaqueductal gray (VLPAG), dorsal raphe nucleus (DR), and lateral parabrachial nucleus (LPB) (P < 0.05). In addition, the treatment resulted in an increase in c-Fos expression within gamma-aminobutyric acid (GABAergic) neurons in the Acb, while simultaneously decreasing c-Fos expression in orexin neurons within the LHA.
Conclusions: The results indicate that spinosin (40 mg/kg, i.p.) enhances NREM sleep in mice. Moreover, heightened activity of GABAergic neurons in the Acb and reduced activity of orexin neurons in the LHA may be the pathway through which spinosin promotes sleep.
期刊介绍:
The journal Sleep and Breathing aims to reflect the state of the art in the international science and practice of sleep medicine. The journal is based on the recognition that management of sleep disorders requires a multi-disciplinary approach and diverse perspectives. The initial focus of Sleep and Breathing is on timely and original studies that collect, intervene, or otherwise inform all clinicians and scientists in medicine, dentistry and oral surgery, otolaryngology, and epidemiology on the management of the upper airway during sleep.
Furthermore, Sleep and Breathing endeavors to bring readers cutting edge information about all evolving aspects of common sleep disorders or disruptions, such as insomnia and shift work. The journal includes not only patient studies, but also studies that emphasize the principles of physiology and pathophysiology or illustrate potentially novel approaches to diagnosis and treatment. In addition, the journal features articles that describe patient-oriented and cost-benefit health outcomes research. Thus, with peer review by an international Editorial Board and prompt English-language publication, Sleep and Breathing provides rapid dissemination of clinical and clinically related scientific information. But it also does more: it is dedicated to making the most important developments in sleep disordered breathing easily accessible to clinicians who are treating sleep apnea by presenting well-chosen, well-written, and highly organized information that is useful for patient care.