{"title":"Time-resolved x-ray absorption spectroscopy probe in ultrafast surface chemistry.","authors":"Anders Nilsson","doi":"10.1063/4.0000289","DOIUrl":null,"url":null,"abstract":"<p><p>To celebrate the scientific achievement of Jo Stöhr, I present here a personal account of the use of x-ray absorption spectroscopy to probe dynamics on surfaces using x-ray lasers. In particular, I will review the investigation of ultrafast processes in adsorbates on surfaces using an optical pump and an x-ray absorption spectroscopy probe. Here, it is shown that it is possible to gain insight into the effects of electronic excitations in metals on adsorbates as well as laser-induced vibrational motions. Furthermore, the ultrafast optical pump allows the detection of the CO precursor state in the desorption channel, species close to the transition state in CO oxidation, and the transient HCO intermediate during CO hydrogenation on Ru(0001).</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 1","pages":"011301"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000289","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To celebrate the scientific achievement of Jo Stöhr, I present here a personal account of the use of x-ray absorption spectroscopy to probe dynamics on surfaces using x-ray lasers. In particular, I will review the investigation of ultrafast processes in adsorbates on surfaces using an optical pump and an x-ray absorption spectroscopy probe. Here, it is shown that it is possible to gain insight into the effects of electronic excitations in metals on adsorbates as well as laser-induced vibrational motions. Furthermore, the ultrafast optical pump allows the detection of the CO precursor state in the desorption channel, species close to the transition state in CO oxidation, and the transient HCO intermediate during CO hydrogenation on Ru(0001).
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.