Poldip2 promotes mtDNA elimination during Drosophila spermatogenesis to ensure maternal inheritance.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2025-03-01 Epub Date: 2025-02-11 DOI:10.1038/s44318-025-00378-4
Ziming Wang, Tirawit Meerod, Nuria Cortes-Silva, Ason C-Y Chiang, Ziyan Nie, Ying Di, Peiqiang Mu, Ankit Verma, Adam James Reid, Hansong Ma
{"title":"Poldip2 promotes mtDNA elimination during Drosophila spermatogenesis to ensure maternal inheritance.","authors":"Ziming Wang, Tirawit Meerod, Nuria Cortes-Silva, Ason C-Y Chiang, Ziyan Nie, Ying Di, Peiqiang Mu, Ankit Verma, Adam James Reid, Hansong Ma","doi":"10.1038/s44318-025-00378-4","DOIUrl":null,"url":null,"abstract":"<p><p>Maternal inheritance of mitochondrial DNA (mtDNA) is highly conserved in metazoans. While many species eliminate paternal mtDNA during late sperm development to foster maternal inheritance, the regulatory mechanisms governing this process remain elusive. Through a forward genetic screen in Drosophila, we identified 47 mutant lines exhibiting substantial retention of mtDNA in mature sperm. We mapped one line to poldip2, a gene predominantly expressed in the testis. Disruption of poldip2 led to substantial mtDNA retention in mature sperm and subsequent paternal transmission to progeny. Further investigation via imaging, biochemical analyses and ChIP assays revealed that Poldip2 is a mitochondrial matrix protein capable of binding mtDNA. Moreover, we showed that ClpX, the key component of a major mitochondrial protease, interacts with Poldip2 to co-regulate mtDNA elimination in Drosophila spermatids. This study sheds light on the mechanisms underlying mtDNA removal during spermatogenesis and underscores the pivotal role of this process in safeguarding maternal inheritance.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"1724-1748"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00378-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maternal inheritance of mitochondrial DNA (mtDNA) is highly conserved in metazoans. While many species eliminate paternal mtDNA during late sperm development to foster maternal inheritance, the regulatory mechanisms governing this process remain elusive. Through a forward genetic screen in Drosophila, we identified 47 mutant lines exhibiting substantial retention of mtDNA in mature sperm. We mapped one line to poldip2, a gene predominantly expressed in the testis. Disruption of poldip2 led to substantial mtDNA retention in mature sperm and subsequent paternal transmission to progeny. Further investigation via imaging, biochemical analyses and ChIP assays revealed that Poldip2 is a mitochondrial matrix protein capable of binding mtDNA. Moreover, we showed that ClpX, the key component of a major mitochondrial protease, interacts with Poldip2 to co-regulate mtDNA elimination in Drosophila spermatids. This study sheds light on the mechanisms underlying mtDNA removal during spermatogenesis and underscores the pivotal role of this process in safeguarding maternal inheritance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
A new hybrid post-translational modification-have you lost your (MARUb)les? Author Correction: Drosophila Alms1 proteins regulate centriolar cartwheel assembly by enabling Plk4-Ana2 amplification loop. Nanoscale analysis of human G1 and metaphase chromatin in situ. A versatile toolbox for determining IRES activity in cells and embryonic tissues. An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1