Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma.

IF 4.6 Q1 ONCOLOGY 癌症耐药(英文) Pub Date : 2025-01-14 eCollection Date: 2025-01-01 DOI:10.20517/cdr.2024.91
Zilu Chen, Kun Mei, Foxing Tan, Yuheng Zhou, Haolin Du, Min Wang, Renjun Gu, Yan Huang
{"title":"Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma.","authors":"Zilu Chen, Kun Mei, Foxing Tan, Yuheng Zhou, Haolin Du, Min Wang, Renjun Gu, Yan Huang","doi":"10.20517/cdr.2024.91","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> Lung adenocarcinoma (LUAD), the most prevalent subtype of non-small cell lung cancer (NSCLC), presents significant clinical challenges due to its high mortality and limited therapeutic options. The molecular heterogeneity and the development of therapeutic resistance further complicate treatment, underscoring the need for a more comprehensive understanding of its cellular and molecular characteristics. This study sought to delineate novel cellular subpopulations and molecular subtypes of LUAD, identify critical biomarkers, and explore potential therapeutic targets to enhance treatment efficacy and patient prognosis. <b>Methods:</b> An integrative multi-omics approach was employed to incorporate single-cell RNA sequencing (scRNA-seq), bulk transcriptomic analysis, and genome-wide association study (GWAS) data from multiple LUAD patient cohorts. Advanced computational approaches, including Bayesian deconvolution and machine learning algorithms, were used to comprehensively characterize the tumor microenvironment, classify LUAD subtypes, and develop a robust prognostic model. <b>Results:</b> Our analysis identified eleven distinct cellular subpopulations within LUAD, with epithelial cells predominating and exhibiting high mutation frequencies in Tumor Protein 53 (<i>TP53)</i> and Titin (<i>TTN)</i> genes. Two molecular subtypes of LUAD [consensus subtype (CS)1 and CS2] were identified, each showing distinct immune landscapes and clinical outcomes. The CS2 subtype, characterized by increased immune cell infiltration, demonstrated a more favorable prognosis and higher sensitivity to immunotherapy. Furthermore, a multi-omics-driven machine learning signature (MOMLS) identified ribonucleotide reductase M1 (RRM1) as a critical biomarker associated with chemotherapy response. Based on this model, several potential therapeutic agents targeting different subtypes were proposed. <b>Conclusion:</b> This study presents a comprehensive multi-omics framework for understanding the molecular complexity of LUAD, providing insights into cellular heterogeneity, molecular subtypes, and potential therapeutic targets. Differential sensitivity to immunotherapy among various cellular subpopulations was identified, paving the way for future immunotherapy-focused research.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"8 ","pages":"3"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2024.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Lung adenocarcinoma (LUAD), the most prevalent subtype of non-small cell lung cancer (NSCLC), presents significant clinical challenges due to its high mortality and limited therapeutic options. The molecular heterogeneity and the development of therapeutic resistance further complicate treatment, underscoring the need for a more comprehensive understanding of its cellular and molecular characteristics. This study sought to delineate novel cellular subpopulations and molecular subtypes of LUAD, identify critical biomarkers, and explore potential therapeutic targets to enhance treatment efficacy and patient prognosis. Methods: An integrative multi-omics approach was employed to incorporate single-cell RNA sequencing (scRNA-seq), bulk transcriptomic analysis, and genome-wide association study (GWAS) data from multiple LUAD patient cohorts. Advanced computational approaches, including Bayesian deconvolution and machine learning algorithms, were used to comprehensively characterize the tumor microenvironment, classify LUAD subtypes, and develop a robust prognostic model. Results: Our analysis identified eleven distinct cellular subpopulations within LUAD, with epithelial cells predominating and exhibiting high mutation frequencies in Tumor Protein 53 (TP53) and Titin (TTN) genes. Two molecular subtypes of LUAD [consensus subtype (CS)1 and CS2] were identified, each showing distinct immune landscapes and clinical outcomes. The CS2 subtype, characterized by increased immune cell infiltration, demonstrated a more favorable prognosis and higher sensitivity to immunotherapy. Furthermore, a multi-omics-driven machine learning signature (MOMLS) identified ribonucleotide reductase M1 (RRM1) as a critical biomarker associated with chemotherapy response. Based on this model, several potential therapeutic agents targeting different subtypes were proposed. Conclusion: This study presents a comprehensive multi-omics framework for understanding the molecular complexity of LUAD, providing insights into cellular heterogeneity, molecular subtypes, and potential therapeutic targets. Differential sensitivity to immunotherapy among various cellular subpopulations was identified, paving the way for future immunotherapy-focused research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合多组学分析用于确定肺腺癌的新型治疗靶点并预测免疫疗法的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
期刊最新文献
Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. Optimizing therapeutic approaches for HR+/HER2- advanced breast cancer: clinical perspectives on biomarkers and treatment strategies post-CDK4/6 inhibitor progression. Regulatory role of non-coding RNAs in 5-Fluorouracil resistance in gastrointestinal cancers. Integrative multi-omics analysis for identifying novel therapeutic targets and predicting immunotherapy efficacy in lung adenocarcinoma. Cancer-associated fibroblast-derived extracellular vesicles: regulators and therapeutic targets in the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1